login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070735
Let r, s, t be three permutations of the set { 1, 2, 3, ..., n }; a(n) = minimal value of Sum_{i=1..n} r(i)*s(i)*t(i).
9
1, 6, 18, 44, 89, 162, 271, 428, 642, 930, 1304, 1781, 2377, 3111, 4002, 5073, 6344, 7842, 9587, 11610, 13933, 16591, 19612, 23028, 26871, 31177, 35976, 41314, 47221, 53736, 60907, 68773, 77373, 86759, 96972, 108063, 120080, 133067, 147082, 162174, 178395, 195806, 214461, 234421, 255739
OFFSET
1,2
MATHEMATICA
{1, 6}~Join~Table[Min[Map[Total, Map[#[[1]]*#[[2]]*#[[3]] &, Subsets[Permutations[Range[n]], {3}]]]] , {n, 3, 5}] (* Robert Price, Apr 08 2019 *)
(* OR, if allowed to replicate small permutations to account for n=1, 2 *)
Table[ Min[Map[Total, Map[#[[1]]*#[[2]]*#[[3]] &, Subsets[If[n > 2, Permutations[Range[n]], Flatten[Table[Permutations[Range[n]], 3], 1]], {3}]]]] , {n, 1, 5}] (* Robert Price, Apr 09 2019 *)
PROG
(PARI) a(n) = {ret = 0; nb = n!; for (a=1, nb, pa = numtoperm(n, a); for (b=1, nb, pb = numtoperm(n, b); for (c=1, nb, pc = numtoperm(n, c); sp = sum(i=1, n, pa[i]*pb[i]*pc[i]); if (! ret, ret = sp, ret = min(ret, sp)); ); ); ); return (ret); } \\ Michel Marcus, Jun 10 2013
(Python) # See Martin Fuller link, Aug 06 2023
CROSSREFS
Cf. A000292 (for two permutations), A070736 (for four).
Cf. A072368 (three subsets of {1..3n})
Sequence in context: A009957 A344992 A011929 * A136028 A083719 A182706
KEYWORD
nice,nonn,hard
AUTHOR
Michael Reid (mreid(AT)math.umass.edu), May 15 2002
EXTENSIONS
a(16)-a(19) from Hiroaki Yamanouchi, Aug 21 2015
a(20) onwards from Martin Fuller, Aug 06 2023
STATUS
approved