OFFSET
1,2
COMMENTS
The number of equivalence classes of matrices modulo n of integer matrices with determinant 1 modulo n. - Michael Somos, Mar 20 2004
24 | a(n) if n > 2. - Michael Somos, Nov 15 2011
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 01 2017
The group SL(2,Z_2) is isomorphic to the symmetric group S_3. - Bernard Schott, Mar 15 2020
REFERENCES
T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 46.
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 75.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
FORMULA
Multiplicative with a(p^e) = (p^2 - 1)*p^(3e-2). - David W. Wilson, Aug 01 2001
a(n) = A000252(n)/phi(n), where phi is Euler totient function (cf. A000010). - Vladeta Jovovic, Oct 30 2001
a(n) = n*Sum_{d|n} d^2*mu(n/d) = n*A007434(n) where A007434 is the Jordan function J_2(n). - Benoit Cloitre, May 03 2003
a(n) = A007434(n^2)/n. - Enrique Pérez Herrero, Sep 14 2010
a(n) = A007434(n^3)/n^3. - Enrique Pérez Herrero, Dec 19 2010
Dirichlet g.f. zeta(s-3)/zeta(s-1). - R. J. Mathar, Feb 27 2011
A046970(n) divides a(n). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ n^4 / (4*Zeta(3)). - Vaclav Kotesovec, Jan 30 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2 / ((p-1)^2 * (p+1) * (p^2 + p + 1))) = 1.258448350408311046314826069717731136828991478925039589864338603650639811... - Vaclav Kotesovec, Sep 19 2020
EXAMPLE
G.f. = x + 6*x^2 + 24*x^3 + 48*x^4 + 120*x^5 + 144*x^6 + 336*x^7 +384*x^8 + ...
a(2) = 6 because [0, 1; 1, 0], [0, 1; 1, 1], [1, 0; 0, 1], [1, 0; 1, 1], [1, 1; 0, 1], [1, 1; 1, 0] are the six matrices modulo 2 with determinant 1 modulo 2.
MAPLE
proc(n) local b, d: b := n^3: for d from 1 to n do if irem(n, d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
MATHEMATICA
(* From Olivier Gérard, Aug 15 1997: (Start) *)
Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1-1/#2^2), #1 ]&, n^3, Range[ n ] ], {n, 1, 35} ]
Table[ n^3 Times@@(1-1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 35} ] (* End *)
a[ n_] := If[ n<1, 0, n Sum[ d^2 MoebiusMu[ n/d ], {d, Divisors @ n}]]; (* Michael Somos, Nov 15 2011 *)
Table[ n DirichletConvolve[ MoebiusMu[m], m^2, m, n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
a[n_] := #.RotateLeft[#] & @ Sort[Mod[ Outer[Times, Range[n], Range[n]], n] // Flatten // Tally][[;; , 2]]
Table[a[n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
PROG
(PARI) {a(n) = if( n<1, 0, n * sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 05 2008 */
KEYWORD
nonn,easy,mult
AUTHOR
EXTENSIONS
More terms from Vaclav Kotesovec, Sep 19 2020
STATUS
approved