login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316623 Array read by antidiagonals: T(n,k) is the order of the group SL(n,Z_k). 3
1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 24, 168, 1, 1, 1, 48, 5616, 20160, 1, 1, 1, 120, 43008, 12130560, 9999360, 1, 1, 1, 144, 372000, 660602880, 237783237120, 20158709760, 1, 1, 1, 336, 943488, 29016000000, 167761422581760, 42064805779476480, 163849992929280, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

All rows are multiplicative.

Equivalently, the number of n X n matrices mod k with determinant 1.

Also, for k prime (but not higher prime powers) the number of n X n matrices over GF(k) with determinant 1.

LINKS

Table of n, a(n) for n=0..44.

R. P. Brent and B. D. McKay, Determinants and ranks of random matrices over Zm, Discrete Mathematics 66 (1987) pp. 35-49.

J. M. Lockhart and W. P. Wardlaw, Determinants of Matrices over the Integers Modulo m, Mathematics Magazine, Vol. 80, No. 3 (Jun., 2007), pp. 207-214.

The Group Properties Wiki, Order formulas for linear groups

FORMULA

T(n,p^e) = (p^e)^(n^2-1) * Product_{j=2..n} (1 - 1/p^j) for prime p, n > 0.

EXAMPLE

Array begins:

==============================================================

n\k| 1       2        3         4           5           6

---+----------------------------------------------------------

0  | 1       1        1         1           1            1 ...

1  | 1       1        1         1           1            1 ...

2  | 1       6       24        48         120          144 ...

3  | 1     168     5616     43008      372000       943488 ...

4  | 1   20160 12130560 660602880 29016000000 244552089600 ...

5  | 1 9999360 ...

...

MATHEMATICA

T[n_, k_] := If[k == 1 || n == 0, 1, k^(n^2-1) Product[1 - p^-j, {p, FactorInteger[k][[All, 1]]}, {j, 2, n}]];

Table[T[n-k+1, k], {n, 0, 8}, {k, n+1, 1, -1}] // Flatten (* Jean-Fran├žois Alcover, Sep 19 2019 *)

PROG

(GAP)

T:=function(n, k) if k=1 or n=0 then return 1; else return Order(SL(n, Integers mod k)); fi; end;

for n in [0..5] do Print(List([1..6], k->T(n, k)), "\n"); od;

(PARI) T(n, k)={my(f=factor(k)); if(n<1, n==0, k^(n^2-1) * prod(i=1, #f~, my(p=f[i, 1]); prod(j=2, n, (1 - p^(-j)))))}

CROSSREFS

Rows n=2..4 are A000056, A011785, A011786.

Columns k=2..5, 7 are A002884, A003787, A011787, A003789, A003790.

Cf. A316622.

Sequence in context: A183092 A050449 A260340 * A108131 A073354 A197420

Adjacent sequences:  A316620 A316621 A316622 * A316624 A316625 A316626

KEYWORD

nonn,mult,tabl

AUTHOR

Andrew Howroyd, Jul 08 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 00:51 EDT 2019. Contains 328135 sequences. (Running on oeis4.)