login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316620
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
5
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 13, 13, 13, 1, 1, 26, 21, 21, 26, 1, 1, 49, 29, 26, 29, 49, 1, 1, 99, 58, 70, 70, 58, 99, 1, 1, 194, 120, 139, 189, 139, 120, 194, 1, 1, 387, 250, 287, 468, 468, 287, 250, 387, 1, 1, 773, 515, 625, 1446, 1916, 1446, 625, 515, 773, 1, 1, 1538
OFFSET
1,5
COMMENTS
Table starts
.1...1...1....1.....1.....1......1.......1........1.........1.........1
.1...4...7...13....26....49.....99.....194......387.......773......1538
.1...7..13...21....29....58....120.....250......515......1100......2302
.1..13..21...26....70...139....287.....625.....1484......3197......7321
.1..26..29...70...189...468...1446....3769....11196.....32714.....93764
.1..49..58..139...468..1916...5428...18126....66146....225773....773853
.1..99.120..287..1446..5428..20777...86855...376999...1555947...6605299
.1.194.250..625..3769.18126..86855..476965..2572180..13348093..71288692
.1.387.515.1484.11196.66146.376999.2572180.16700783.105494740.692447139
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4) for n>5
k=3: [order 18] for n>19
k=4: [order 70] for n>71
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..0..0..0. .0..0..1..0. .0..1..0..0. .0..1..1..0
..1..1..0..0. .1..1..1..1. .0..0..1..1. .1..0..1..1. .0..1..0..1
..1..0..0..0. .1..0..0..1. .0..0..0..1. .0..1..1..1. .1..0..0..1
..1..0..1..1. .1..0..0..1. .1..1..0..1. .1..0..1..1. .0..1..0..1
..0..1..1..0. .1..0..0..1. .0..1..1..0. .0..1..0..0. .0..1..1..0
CROSSREFS
Column 2 is A304004.
Column 3 is A304947.
Column 4 is A304948.
Sequence in context: A304010 A305360 A304952 * A304676 A316123 A146771
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 08 2018
STATUS
approved