login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316622 Array read by antidiagonals: T(n,k) is the order of the group GL(n,Z_k). 10
1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 2, 48, 168, 1, 1, 4, 96, 11232, 20160, 1, 1, 2, 480, 86016, 24261120, 9999360, 1, 1, 6, 288, 1488000, 1321205760, 475566474240, 20158709760, 1, 1, 4, 2016, 1886976, 116064000000, 335522845163520, 84129611558952960, 163849992929280, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

All rows are multiplicative.

Equivalently, the number of invertible n X n matrices mod k.

Also, for k prime (but not higher prime powers) the number of nonsingular n X n matrices over GF(k).

LINKS

Table of n, a(n) for n=0..44.

R. P. Brent and B. D. McKay, Determinants and ranks of random matrices over Zm, Discrete Mathematics 66 (1987) pp. 35-49.

J. M. Lockhart and W. P. Wardlaw, Determinants of Matrices over the Integers Modulo m, Mathematics Magazine, Vol. 80, No. 3 (Jun., 2007), pp. 207-214.

The Group Properties Wiki, Order formulas for linear groups

FORMULA

T(n,p^e) = (p^e)^(n^2) * Product_{j=1..n} (1 - 1/p^j) for prime p.

EXAMPLE

Array begins:

=================================================================

n\k| 1       2         3          4             5           6

---+-------------------------------------------------------------

0  | 1       1         1          1            1            1 ...

1  | 1       1         2          2            4            2 ...

2  | 1       6        48         96          480          288 ...

3  | 1     168     11232      86016      1488000      1886976 ...

4  | 1   20160  24261120 1321205760 116064000000 489104179200 ...

5  | 1 9999360  ...

...

MATHEMATICA

T[_, 1] = T[0, _] = 1; T[n_, k_] := T[n, k] = Module[{f = FactorInteger[k], p, e}, If[Length[f] == 1, {p, e} = f[[1]]; (p^e)^(n^2)* Product[(1 - 1/p^j), {j, 1, n}], Times @@ (T[n, Power @@ #]& /@ f)]];

Table[T[n - k + 1, k], {n, 0, 8}, {k, n + 1, 1, -1}] // Flatten (* Jean-Fran├žois Alcover, Jul 25 2019 *)

PROG

(GAP)

T:=function(n, k) if k=1 or n=0 then return 1; else return Order(GL(n, Integers mod k)); fi; end;

for n in [0..5] do Print(List([1..6], k->T(n, k)), "\n"); od;

(PARI) T(n, k)={my(f=factor(k)); k^(n^2) * prod(i=1, #f~, my(p=f[i, 1]); prod(j=1, n, (1 - p^(-j))))}

CROSSREFS

Rows n=2..4 are A000252, A064767, A305186.

Columns k=2..7 are A002884, A053290, A065128, A053292, A065498, A053293.

Cf. A053291 (GF(4)), A052496 (GF(8)), A052497 (GF(9)).

Cf. A316623.

Sequence in context: A090185 A059813 A097099 * A197111 A065529 A205015

Adjacent sequences:  A316619 A316620 A316621 * A316623 A316624 A316625

KEYWORD

nonn,mult,tabl

AUTHOR

Andrew Howroyd, Jul 08 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 08:02 EDT 2019. Contains 328146 sequences. (Running on oeis4.)