This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A316624 Number of balanced p-trees with n leaves. 12
 1, 1, 1, 2, 2, 4, 4, 8, 9, 16, 20, 40, 47, 83, 111, 201, 259, 454, 603, 1049, 1432, 2407, 3390, 6006, 8222, 13904, 20304, 34828, 50291, 85817, 126013, 217653, 317894, 535103, 798184, 1367585, 2008125, 3360067, 5048274, 8499942, 12623978, 21023718, 31552560, 52575257 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS A p-tree of weight n is either a single node (if n = 1) or a finite sequence of p-trees whose weights are weakly decreasing and sum to n. A tree is balanced if all leaves have the same height. LINKS Andrew Howroyd, Table of n, a(n) for n = 1..500 EXAMPLE The a(1) = 1 through a(7) = 4 balanced p-trees:   o  (oo)  (ooo)  (oooo)      (ooooo)      (oooooo)        (ooooooo)                   ((oo)(oo))  ((ooo)(oo))  ((ooo)(ooo))    ((oooo)(ooo))                                            ((oooo)(oo))    ((ooooo)(oo))                                            ((oo)(oo)(oo))  ((ooo)(oo)(oo)) MATHEMATICA ptrs[n_]:=If[n==1, {"o"}, Join@@Table[Tuples[ptrs/@p], {p, Rest[IntegerPartitions[n]]}]]; Table[Length[ptrs[n]], {n, 12}] Table[Length[Select[ptrs[n], SameQ@@Length/@Position[#, "o"]&]], {n, 12}] PROG (PARI) seq(n)={my(p=x + O(x*x^n), q=0); while(p, q+=p; p = 1/prod(k=1, n, 1 - polcoef(p, k)*x^k + O(x*x^n)) - 1 - p); Vec(q)} \\ Andrew Howroyd, Oct 26 2018 CROSSREFS Cf. A000311, A000669, A001678, A005804, A048816, A079500, A119262, A120803, A141268, A196545, A289501, A319312. Sequence in context: A324843 A306692 A120803 * A318770 A284613 A000011 Adjacent sequences:  A316621 A316622 A316623 * A316625 A316626 A316627 KEYWORD nonn AUTHOR Gus Wiseman, Oct 07 2018 EXTENSIONS Terms a(17) and beyond from Andrew Howroyd, Oct 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 07:58 EDT 2019. Contains 328146 sequences. (Running on oeis4.)