|
|
A011786
|
|
Number of 4 X 4 matrices whose determinant is 1 mod n.
|
|
8
|
|
|
1, 20160, 12130560, 660602880, 29016000000, 244552089600, 4635182361600, 21646635171840, 174060277297920, 584962560000000, 4139330225184000, 8013482872012800, 50858076935877120, 93445276409856000, 351980328960000000, 709316941310853120, 2851903720876769280
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Order of the group SL(4,Z_n). For n > 2, a(n) is divisible by 11520. - Jianing Song, Nov 24 2018
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n^16/phi(n))*Product_{primes p dividing n} ((1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)). Multiplicative with a(p^e) = p^(15*e-9)*(p^4 - 1)*(p^3 - 1)*(p^2 - 1). - Vladeta Jovovic, Nov 18 2001
a(n) = n^15*Product_{primes p dividing n} ((1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2)) = A305186(n)/phi(n). - Jianing Song, Nov 24 2018
Sum_{k=1..n} a(k) ~ c * n^16, where c = (1/16) * Product_{p prime} ((p^10 - p^7 - p^6 - p^5 + p^4 + p^3 + p^2 - 1)/p^10) = 0.04715136234... . - Amiram Eldar, Oct 23 2022
|
|
MATHEMATICA
|
f[p_, e_] := (1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2); a[1] = 1; a[n_] := n^15 * Times @@ f @@@ FactorInteger[n]; Array[a, 17] (* Amiram Eldar, Oct 23 2022 *)
|
|
PROG
|
(PARI) a(n) = f = factor(n); n^16/eulerphi(n) * prod(i=1, #f~, (1-1/f[i, 1]^4)*(1-1/f[i, 1]^3)*(1-1/f[i, 1]^2)*(1-1/f[i, 1])); \\ Michel Marcus, Sep 02 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
benlove(AT)preston.polaristel.net (Benjamin T. Love)
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|