login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4 X 4 matrices whose determinant is 1 mod n.
8

%I #32 Oct 23 2022 02:54:25

%S 1,20160,12130560,660602880,29016000000,244552089600,4635182361600,

%T 21646635171840,174060277297920,584962560000000,4139330225184000,

%U 8013482872012800,50858076935877120,93445276409856000,351980328960000000,709316941310853120,2851903720876769280

%N Number of 4 X 4 matrices whose determinant is 1 mod n.

%C Order of the group SL(4,Z_n). For n > 2, a(n) is divisible by 11520. - _Jianing Song_, Nov 24 2018

%H T. D. Noe, <a href="/A011786/b011786.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = (n^16/phi(n))*Product_{primes p dividing n} ((1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)). Multiplicative with a(p^e) = p^(15*e-9)*(p^4 - 1)*(p^3 - 1)*(p^2 - 1). - _Vladeta Jovovic_, Nov 18 2001

%F a(n) = n^15*Product_{primes p dividing n} ((1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2)) = A305186(n)/phi(n). - _Jianing Song_, Nov 24 2018

%F Sum_{k=1..n} a(k) ~ c * n^16, where c = (1/16) * Product_{p prime} ((p^10 - p^7 - p^6 - p^5 + p^4 + p^3 + p^2 - 1)/p^10) = 0.04715136234... . - _Amiram Eldar_, Oct 23 2022

%t f[p_, e_] := (1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2); a[1] = 1; a[n_] := n^15 * Times @@ f @@@ FactorInteger[n]; Array[a, 17] (* _Amiram Eldar_, Oct 23 2022 *)

%o (PARI) a(n) = f = factor(n); n^16/eulerphi(n) * prod(i=1, #f~, (1-1/f[i,1]^4)*(1-1/f[i,1]^3)*(1-1/f[i,1]^2)*(1-1/f[i,1])); \\ _Michel Marcus_, Sep 02 2013

%Y Cf. A000056 (SL(2,Z_n)), A011785 (SL(3,Z_n)).

%Y Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).

%Y Cf. A000010.

%K nonn,mult

%O 1,2

%A benlove(AT)preston.polaristel.net (Benjamin T. Love)

%E More terms from _Vladeta Jovovic_, Nov 18 2001