login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290480
Product of proper unitary divisors of n.
2
1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 27000, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 74088, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 216000, 1, 62, 63, 1, 65, 287496, 1, 68, 69, 343000, 1, 72, 1, 74, 75, 76, 77, 474552, 1, 80
OFFSET
1,6
LINKS
FORMULA
a(n) = A061537(n)/n.
a(n) = n^(2^(omega(n)-1)-1), where omega() is the number of distinct primes dividing n (A001221).
a(n) = 1 if n is a prime power.
EXAMPLE
a(12) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 3 are proper unitary {1, 3, 4} and 1*3*4 = 12.
MAPLE
with(numtheory):
a:= n-> mul(d, d=select(x-> igcd(x, n/x)=1, divisors(n) minus {n})):
seq(a(n), n=1..80); # Alois P. Heinz, Aug 03 2017
MATHEMATICA
Table[Product[d, {d, Select[Divisors[n], GCD[#, n/#] == 1 &]}]/n, {n, 80}]
Table[n^(2^(PrimeNu[n] - 1) - 1), {n, 80}]
PROG
(Python)
from sympy import divisors, gcd, prod
def a(n): return prod(d for d in divisors(n) if gcd(d, n//d) == 1)//n
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 04 2017
(PARI) A290480(n) = if(1==n, n, n^(2^(omega(n)-1)-1)); \\ Antti Karttunen, Aug 06 2018
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 03 2017
STATUS
approved