login
A290480
Product of proper unitary divisors of n.
2
1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 27000, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 74088, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 216000, 1, 62, 63, 1, 65, 287496, 1, 68, 69, 343000, 1, 72, 1, 74, 75, 76, 77, 474552, 1, 80
OFFSET
1,6
LINKS
FORMULA
a(n) = A061537(n)/n.
a(n) = n^(2^(omega(n)-1)-1), where omega() is the number of distinct primes dividing n (A001221).
a(n) = 1 if n is a prime power.
EXAMPLE
a(12) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 3 are proper unitary {1, 3, 4} and 1*3*4 = 12.
MAPLE
with(numtheory):
a:= n-> mul(d, d=select(x-> igcd(x, n/x)=1, divisors(n) minus {n})):
seq(a(n), n=1..80); # Alois P. Heinz, Aug 03 2017
MATHEMATICA
Table[Product[d, {d, Select[Divisors[n], GCD[#, n/#] == 1 &]}]/n, {n, 80}]
Table[n^(2^(PrimeNu[n] - 1) - 1), {n, 80}]
PROG
(Python)
from sympy import divisors, gcd, prod
def a(n): return prod(d for d in divisors(n) if gcd(d, n//d) == 1)//n
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 04 2017
(PARI) A290480(n) = if(1==n, n, n^(2^(omega(n)-1)-1)); \\ Antti Karttunen, Aug 06 2018
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 03 2017
STATUS
approved