login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290477
Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,4,1,5 (the first five digits of Pi).
1
3, 19, 118, 709, 4259, 25557, 153343, 920062, 5520373, 33122243, 198733461, 1192400767, 7154404606, 42926427637, 257558565827, 1545351394965, 9272108369791, 55632650218750, 333795901312501, 2002775407875011, 12016652447250069, 72099914683500415
OFFSET
1,1
FORMULA
From Colin Barker, Aug 04 2017: (Start)
G.f.: x*(3 + x + 4*x^2 + x^3 + 5*x^4) / ((1 - x)*(1 - 6*x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 6*a(n-1) + a(n-5) - 6*a(n-6) for n>6.
(End)
EXAMPLE
Base 6...........Decimal
3......................3
31....................19
314..................118
3141.................709
31415...............4259
314153.............25557
3141531...........153343
etc. - Colin Barker, Aug 04 2017
MATHEMATICA
Table[FromDigits[PadRight[{}, n, {3, 1, 4, 1, 5}], 6], {n, 30}] (* or *) LinearRecurrence[{6, 0, 0, 0, 1, -6}, {3, 19, 118, 709, 4259, 25557}, 30]
PROG
(PARI) Vec(x*(3 + x + 4*x^2 + x^3 + 5*x^4) / ((1 - x)*(1 - 6*x)*(1 + x + x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Aug 04 2017
CROSSREFS
Sequence in context: A084133 A005667 A098444 * A321002 A221184 A274852
KEYWORD
nonn,base,easy
AUTHOR
Harvey P. Dale, Aug 03 2017
STATUS
approved