login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321002
a(0)=3; thereafter a(n) = 20*6^(n-1)-2^(n-1).
2
3, 19, 118, 716, 4312, 25904, 155488, 933056, 5598592, 33592064, 201553408, 1209322496, 7255939072, 43535642624, 261213872128, 1567283265536, 9403699658752, 56422198083584, 338533188763648, 2031199133106176, 12187194799685632, 73123168800210944, 438739012805459968, 2632434076841148416
OFFSET
0,1
COMMENTS
Conjectured to be the sum of A175046(i) for 2^n <= i < 2^(n+1).
Conjecture is true (see comments in A175046). - Chai Wah Wu, Nov 18 2018
FORMULA
From Colin Barker, Nov 02 2018: (Start)
G.f.: (1 - x)*(3 - 2*x) / ((1 - 2*x)*(1 - 6*x)).
a(n) = 8*a(n-1) - 12*a(n-2) for n>2.
(End)
PROG
(PARI) Vec((1 - x)*(3 - 2*x) / ((1 - 2*x)*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Nov 02 2018
(PARI) a(n) = if (n, 20*6^(n-1)-2^(n-1), 3); \\ Michel Marcus, Nov 02 2018
CROSSREFS
Essentially the first differences of A321003.
Cf. A175046.
Sequence in context: A005667 A098444 A290477 * A221184 A274852 A139176
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 01 2018
STATUS
approved