login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321003
a(n) = 2^n*(4*3^n-1).
2
3, 22, 140, 856, 5168, 31072, 186560, 1119616, 6718208, 40310272, 241863680, 1451186176, 8707125248, 52242767872, 313456640000, 1880739905536, 11284439564288, 67706637647872, 406239826411520, 2437438959517696, 14624633759203328, 87747802559414272
OFFSET
0,1
COMMENTS
Conjectured to be the sum of A175046(i) for 1 <= i < 2^(n+1).
FORMULA
From Colin Barker, Nov 02 2018: (Start)
G.f.: (3 - 2*x) / ((1 - 2*x)*(1 - 6*x)).
a(n) = 8*a(n-1) - 12*a(n-2) for n>1.
(End)
E.g.f.: -exp(2*x)+4*exp(6*x). - Stefano Spezia, Nov 02 2018
MAPLE
a := n -> 2^n*(4*3^n-1):
seq(a(n), n = 0 .. 25); # Stefano Spezia, Nov 02 2018
MATHEMATICA
a[n_]:=2^n*(4*3^n-1); Array[a, 25, 0] (* or *)
CoefficientList[Series[-E^(2 x) + 4 E^(6 x), {x, 0, 25}], x]*Table[k!, {k, 0, 25}] (* Stefano Spezia, Nov 02 2018 *)
PROG
(PARI) Vec((3 - 2*x) / ((1 - 2*x)*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Nov 02 2018
(PARI) a(n) = 2^n*(4*3^n-1); \\ Michel Marcus, Nov 02 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 01 2018
STATUS
approved