login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304404
If n = Product (p_j^k_j) then a(n) = Product (n/p_j^k_j).
1
1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 900, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 1764, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 3600, 1, 62, 63, 1, 65, 4356, 1, 68, 69, 4900, 1, 72, 1, 74, 75
OFFSET
1,6
FORMULA
a(n) = n^(omega(n)-1), where omega() = A001221.
a(n) = A062509(n)/n.
EXAMPLE
a(60) = a(2^2*3*5) = (60/2^2) * (60/3) * (60/5) = 15 * 20 * 12 = 3600.
MATHEMATICA
a[n_] := Times @@ (n/#[[1]]^#[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 75}]
Table[n^(PrimeNu[n] - 1), {n, 75}]
PROG
(PARI) A304404(n) = (n^(omega(n)-1)); \\ Antti Karttunen, Aug 06 2018
(Python)
from sympy.ntheory.factor_ import primenu
def A304404(n): return int(n**(primenu(n)-1)) # Chai Wah Wu, Jul 12 2023
CROSSREFS
Sequence in context: A340679 A166142 A290479 * A290480 A183092 A050449
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 12 2018
STATUS
approved