login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304403
G.f. A(x) satisfies: [x^n] A(x) * (1+x)^(n*(n-1)/2) = [x^n] (1+x)^(n*(n+1)/2) for n >= 0.
1
1, 1, 2, 10, 85, 1001, 15036, 273932, 5858560, 143735650, 3976623010, 122427035732, 4150101179665, 153570442058684, 6158890134498661, 266074435570524219, 12318188650382356297, 608375312208623381681, 31927089332971578025902, 1774159611825531210120848, 104068978022940760659203857, 6425920321260029677988702979, 416624218261246444665784515673
OFFSET
0,3
COMMENTS
Limit ( a(n) / n! )^(1/n) seems to exist and is near 3.1...
LINKS
FORMULA
a(n) = binomial(n*(n+1)/2, n) - Sum_{k=0..n-1} a(k) * binomial(n*(n-1)/2, n-k), for n >= 0.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 85*x^4 + 1001*x^5 + 15036*x^6 + 273932*x^7 + 5858560*x^8 + 143735650*x^9 + 3976623010*x^10 + 122427035732*x^11 + ...
such that
binomial(n*(n+1)/2, n) = Sum_{k=0..n} a(k) * binomial(n*(n-1)/2, n-k) for n >= 0.
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x) * (1+x)^(n*(n-1)/2) begins:
n=0: [1, 1, 2, 10, 85, 1001, 15036, 273932, 5858560, ...];
n=1: [1, 1, 2, 10, 85, 1001, 15036, 273932, 5858560, ...];
n=2: [1, 2, 3, 12, 95, 1086, 16037, 288968, 6132492, ...];
n=3: [1, 4, 8, 20, 122, 1288, 18304, 322128, 6726465, ...];
n=4: [1, 7, 23, 57, 210, 1722, 22554, 381026, 7749049, ...];
n=5: [1, 11, 57, 195, 605, 3003, 30953, 482471, 9415575, ...];
n=6: [1, 16, 122, 600, 2265, 8604, 54264, 674348, 12170710, ...];
n=7: [1, 22, 233, 1592, 8030, 33880, 153790, 1184040, 17240535, ...];
n=8: [1, 29, 408, 3720, 24872, 132468, 623924, 3313868, 30260340, ...]; ...
in which the main diagonal equals A014068:
[1, 1, 3, 20, 210, 3003, 54264, 1184040, ..., binomial(n*(n+1)/2, n), ...]
illustrating [x^n] A(x) * (1+x)^(n*(n-1)/2) = [x^n] (1+x)^(n*(n+1)/2) for n >= 0.
ILLUSTRATION OF RECURRENCE.
The table of coefficients of x^k in (1+x)^(n*(n-1)/2) begins:
n=1: [1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 1, 0, 0, 0, 0, 0, 0, 0, ...];
n=3: [1, 3, 3, 1, 0, 0, 0, 0, 0, ...];
n=4: [1, 6, 15, 20, 15, 6, 1, 0, 0, ...];
n=5: [1, 10, 45, 120, 210, 252, 210, 120, 45, ...];
n=6: [1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, ...];
n=7: [1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, ...];
n=8: [1, 28, 378, 3276, 20475, 98280, 376740, 1184040, 3108105, ...];
n=9: [1, 36, 630, 7140, 58905, 376992, 1947792, 8347680, 30260340, ...]; ...
The recurrence uses the above coefficients like so:
a(0) = 1;
a(1) = 1 - (0*a(0) = 1;
a(2) = 3 - (0*a(0) + 1*a(1)) = 2;
a(3) = 20 - (1*a(0) + 3*a(1) + 3*a(2)) = 10;
a(4) = 210 - (15*a(0) + 20*a(1) + 15*a(2) + 6*a(3)) = 85;
a(5) = 3003 - (252*a(0) + 210*a(1) + 120*a(2) + 45*a(3) + 10*a(4)) = 1001; ...
illustrating a(n) = C(n*(n+1)/2, n) - Sum_{k=0..n-1} C(n*(n-1)/2, n-k) * a(k), for n >= 0.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A-1; A[#A] = binomial(m*(m+1)/2, m) - polcoeff( Ser(A)*(1+x +x*O(x^m))^(m*(m-1)/2) , m) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Recurrence: */
{a(n) = if(n==0, 1, binomial(n*(n+1)/2, n) - sum(k=0, n-1, a(k) * binomial(n*(n-1)/2, n-k) ) )}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A302935 A332655 A156466 * A132397 A202745 A364396
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 18 2018
STATUS
approved