Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 May 19 2018 00:01:10
%S 1,1,2,10,85,1001,15036,273932,5858560,143735650,3976623010,
%T 122427035732,4150101179665,153570442058684,6158890134498661,
%U 266074435570524219,12318188650382356297,608375312208623381681,31927089332971578025902,1774159611825531210120848,104068978022940760659203857,6425920321260029677988702979,416624218261246444665784515673
%N G.f. A(x) satisfies: [x^n] A(x) * (1+x)^(n*(n-1)/2) = [x^n] (1+x)^(n*(n+1)/2) for n >= 0.
%C Limit ( a(n) / n! )^(1/n) seems to exist and is near 3.1...
%H Paul D. Hanna, <a href="/A304403/b304403.txt">Table of n, a(n) for n = 0..520</a>
%F a(n) = binomial(n*(n+1)/2, n) - Sum_{k=0..n-1} a(k) * binomial(n*(n-1)/2, n-k), for n >= 0.
%e G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 85*x^4 + 1001*x^5 + 15036*x^6 + 273932*x^7 + 5858560*x^8 + 143735650*x^9 + 3976623010*x^10 + 122427035732*x^11 + ...
%e such that
%e binomial(n*(n+1)/2, n) = Sum_{k=0..n} a(k) * binomial(n*(n-1)/2, n-k) for n >= 0.
%e ILLUSTRATION OF DEFINITION.
%e The table of coefficients of x^k in A(x) * (1+x)^(n*(n-1)/2) begins:
%e n=0: [1, 1, 2, 10, 85, 1001, 15036, 273932, 5858560, ...];
%e n=1: [1, 1, 2, 10, 85, 1001, 15036, 273932, 5858560, ...];
%e n=2: [1, 2, 3, 12, 95, 1086, 16037, 288968, 6132492, ...];
%e n=3: [1, 4, 8, 20, 122, 1288, 18304, 322128, 6726465, ...];
%e n=4: [1, 7, 23, 57, 210, 1722, 22554, 381026, 7749049, ...];
%e n=5: [1, 11, 57, 195, 605, 3003, 30953, 482471, 9415575, ...];
%e n=6: [1, 16, 122, 600, 2265, 8604, 54264, 674348, 12170710, ...];
%e n=7: [1, 22, 233, 1592, 8030, 33880, 153790, 1184040, 17240535, ...];
%e n=8: [1, 29, 408, 3720, 24872, 132468, 623924, 3313868, 30260340, ...]; ...
%e in which the main diagonal equals A014068:
%e [1, 1, 3, 20, 210, 3003, 54264, 1184040, ..., binomial(n*(n+1)/2, n), ...]
%e illustrating [x^n] A(x) * (1+x)^(n*(n-1)/2) = [x^n] (1+x)^(n*(n+1)/2) for n >= 0.
%e ILLUSTRATION OF RECURRENCE.
%e The table of coefficients of x^k in (1+x)^(n*(n-1)/2) begins:
%e n=1: [1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
%e n=2: [1, 1, 0, 0, 0, 0, 0, 0, 0, ...];
%e n=3: [1, 3, 3, 1, 0, 0, 0, 0, 0, ...];
%e n=4: [1, 6, 15, 20, 15, 6, 1, 0, 0, ...];
%e n=5: [1, 10, 45, 120, 210, 252, 210, 120, 45, ...];
%e n=6: [1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, ...];
%e n=7: [1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, ...];
%e n=8: [1, 28, 378, 3276, 20475, 98280, 376740, 1184040, 3108105, ...];
%e n=9: [1, 36, 630, 7140, 58905, 376992, 1947792, 8347680, 30260340, ...]; ...
%e The recurrence uses the above coefficients like so:
%e a(0) = 1;
%e a(1) = 1 - (0*a(0) = 1;
%e a(2) = 3 - (0*a(0) + 1*a(1)) = 2;
%e a(3) = 20 - (1*a(0) + 3*a(1) + 3*a(2)) = 10;
%e a(4) = 210 - (15*a(0) + 20*a(1) + 15*a(2) + 6*a(3)) = 85;
%e a(5) = 3003 - (252*a(0) + 210*a(1) + 120*a(2) + 45*a(3) + 10*a(4)) = 1001; ...
%e illustrating a(n) = C(n*(n+1)/2, n) - Sum_{k=0..n-1} C(n*(n-1)/2, n-k) * a(k), for n >= 0.
%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); m=#A-1; A[#A] = binomial(m*(m+1)/2, m) - polcoeff( Ser(A)*(1+x +x*O(x^m))^(m*(m-1)/2) , m) );A[n+1]}
%o for(n=0,30,print1(a(n),", "))
%o (PARI) /* Recurrence: */
%o {a(n) = if(n==0,1, binomial(n*(n+1)/2, n) - sum(k=0,n-1, a(k) * binomial(n*(n-1)/2, n-k) ) )}
%o for(n=0,30,print1(a(n),", "))
%K nonn
%O 0,3
%A _Paul D. Hanna_, May 18 2018