OFFSET
0,1
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,8).
FORMULA
O.g.f.: 2(2x-1)/((x+1)(8x-1)). a(n) = 2*A082311(n). - R. J. Mathar, Jan 13 2008
a(0)=2, a(1)=10, a(n) = 7*a(n-1)+8*a(n-2). - Harvey P. Dale, Oct 14 2015
From Oboifeng Dira, Jun 05 2020: (Start)
a(n) = Sum_{k=0..n} binomial(3*n+2,3*k+1).
(End)
a(n) = 2*((-1)^n + 2^(1+3*n)) / 3 for n>1. - Colin Barker, Jun 05 2020
MATHEMATICA
CoefficientList[Series[2(2x-1)/((x+1)(8x-1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{7, 8}, {2, 10}, 30] (* Harvey P. Dale, Oct 14 2015 *)
PROG
(PARI) Vec(2*(1 - 2*x) / ((1 + x)*(1 - 8*x)) + O(x^20)) \\ Colin Barker, Jun 05 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 20 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 13 2008
STATUS
approved