login
A132397
Second trisection of A024494.
2
2, 10, 86, 682, 5462, 43690, 349526, 2796202, 22369622, 178956970, 1431655766, 11453246122, 91625968982, 733007751850, 5864062014806, 46912496118442, 375299968947542, 3002399751580330, 24019198012642646, 192153584101141162
OFFSET
0,1
FORMULA
O.g.f.: 2(2x-1)/((x+1)(8x-1)). a(n) = 2*A082311(n). - R. J. Mathar, Jan 13 2008
a(0)=2, a(1)=10, a(n) = 7*a(n-1)+8*a(n-2). - Harvey P. Dale, Oct 14 2015
From Oboifeng Dira, Jun 05 2020: (Start)
a(n) = A078008(3*n+2). Third trisection of A078008.
a(n) = Sum_{k=0..n} binomial(3*n+2,3*k+1).
(End)
a(n) = 2*((-1)^n + 2^(1+3*n)) / 3 for n>1. - Colin Barker, Jun 05 2020
MATHEMATICA
CoefficientList[Series[2(2x-1)/((x+1)(8x-1)), {x, 0, 30}], x] (* or *) LinearRecurrence[{7, 8}, {2, 10}, 30] (* Harvey P. Dale, Oct 14 2015 *)
PROG
(PARI) Vec(2*(1 - 2*x) / ((1 + x)*(1 - 8*x)) + O(x^20)) \\ Colin Barker, Jun 05 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 20 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 13 2008
STATUS
approved