The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046970 Dirichlet inverse of the Jordan function J_2 (A007434). 19
 1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -576, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS B(n+2) = -B(n)*((n+2)*(n+1)/(4*Pi^2))*z(n+2)/z(n) = -B(n)*((n+2)*(n+1)/(4*Pi^2)) * Sum_{j>=1} a(j)/j^(n+2). Apart from signs also Sum_{d|n} core(d)^2*mu(n/d) where core(x) is the squarefree part of x. - Benoit Cloitre, May 31 2002 REFERENCES M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, pp. 805-811. Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, p. 48. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. P. G. Brown, Some comments on inverse arithmetic functions, Math. Gaz. 89 (516) (2005) 403-408. Paul W. Oxby, A Function Based on Chebyshev Polynomials as an Alternative to the Sinc Function in FIR Filter Design, arXiv:2011.10546 [eess.SP], 2020. Wikipedia, Riemann zeta function. FORMULA Multiplicative with a(p^e) = 1 - p^2. a(n) = Sum_{d|n} mu(d)*d^2. abs(a(n)) = Product_{p prime divides n} (p^2 - 1). - Jon Perry, Aug 24 2010 From Wolfdieter Lang, Jun 16 2011: (Start) Dirichlet g.f.: zeta(s)/zeta(s-2). a(n) = J_{-2}(n)*n^2, with the Jordan function J_k(n), with J_k(1):=1. See the Apostol reference, p. 48. exercise 17. (End) a(prime(n)) = -A084920(n). - R. J. Mathar, Aug 28 2011 G.f.: Sum_{k>=1} mu(k)*k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017 a(n) = Sum_{d divides n} d * (sigma_1(d))^(-1) * sigma_1(n/d), where (sigma_1(n))^(-1) = A046692(n) denotes the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024 a(n) = A076479(n) * A322360(n). - Amiram Eldar, Feb 02 2024 EXAMPLE a(3) = -8 because the divisors of 3 are {1, 3} and mu(1)*1^2 + mu(3)*3^2 = -8. a(4) = -3 because the divisors of 4 are {1, 2, 4} and mu(1)*1^2 + mu(2)*2^2 + mu(4)*4^2 = -3. E.g., a(15) = (3^2 - 1) * (5^2 - 1) = 8*24 = 192. - Jon Perry, Aug 24 2010 G.f. = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + ... MAPLE Jinvk := proc(n, k) local a, f, p ; a := 1 ; for f in ifactors(n)[2] do p := op(1, f) ; a := a*(1-p^k) ; end do: a ; end proc: A046970 := proc(n) Jinvk(n, 2) ; end proc: # R. J. Mathar, Jul 04 2011 MATHEMATICA muDD[d_] := MoebiusMu[d]*d^2; Table[Plus @@ muDD[Divisors[n]], {n, 60}] (Lopez) Flatten[Table[{ x = FactorInteger[n]; p = 1; For[i = 1, i <= Length[x], i++, p = p*(1 - x[[i]][[1]]^2)]; p}, {n, 1, 50, 1}]] (* Jon Perry, Aug 24 2010 *) a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ d], {d, Divisors @ n}]]; (* Michael Somos, Jan 11 2014 *) a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (1 - #[[1]]^2 & /@ FactorInteger @ n)]; (* Michael Somos, Jan 11 2014 *) PROG (PARI) A046970(n)=sumdiv(n, d, d^2*moebius(d)) \\ Benoit Cloitre (Haskell) a046970 = product . map ((1 -) . (^ 2)) . a027748_row -- Reinhard Zumkeller, Jan 19 2012 (PARI) {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X*p^2) / (1 - X))[n])}; /* Michael Somos, Jan 11 2014 */ (Python) from math import prod from sympy import primefactors def A046970(n): return prod(1-p**2 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023 CROSSREFS Dirichlet inverse of Jordan totient function J_r(n): A023900 (r = 1), A063453(r = 3), A189922 (r = 4). Cf. A007434, A027641, A027642, A027748, A046692, A076479, A084920, A322360. Sequence in context: A144457 A220138 A146975 * A322360 A058936 A280369 Adjacent sequences: A046967 A046968 A046969 * A046971 A046972 A046973 KEYWORD sign,easy,mult AUTHOR Douglas Stoll, dougstoll(AT)email.msn.com EXTENSIONS Corrected and extended by Vladeta Jovovic, Jul 25 2001 Additional comments from Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Jul 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 10:36 EDT 2024. Contains 375987 sequences. (Running on oeis4.)