login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046970 Dirichlet inverse of the Jordan function J_2 (A007434). 9
1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -576, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

B(n+2) = -B(n)*((n+2)*(n+1)/(4pi^2))*z(n+2)/z(n) = -B(n)*((n+2)*(n+1)/(4*Pi^2)) * sum_{j>=1} [ a(j)/j^(n+2) ]

Apart from signs also Sum_{d|n} core(d)^2*mu(n/d) where core(x) is the squarefree part of x. - Benoit Cloitre, May 31 2002

REFERENCES

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, pp. 805-811.

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, p. 48.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

P. G. Brown, Some comments on inverse arithmetic functions, Math. Gaz. 89 (516) (2005) 403-408.

Wikipedia, Riemann zeta function.

FORMULA

Multiplicative with a(p^e) = 1-p^2.

a(n) = Sum_{d|n} mu(d)*d^2.

abs(a(n)) = prod(p prime divides n, p^2-1 ) [Jon Perry, Aug 24 2010]

From Wolfdieter Lang, Jun 16 2011: (Start)

Dirichlet g.f.: zeta(s)/zeta(s-2).

a(n) = J_{-2}(n)*n^2, with the Jordan function J_k(n), with J_k(1):=1. See the Apostol reference, p. 48. exercise 17. (End)

a(prime(n)) = -A084920(n). - R. J. Mathar, Aug 28 2011

EXAMPLE

a(3) = -8 because the divisors of 3 are {1, 3} and mu(1)*1^2 + mu(3)*3^2 = -8.

a(4) = -3 because the divisors of 4 are {1, 2, 4} and mu(1)*1^2 + mu(2)*2^2 + mu(4)*4^2 = -3

e.g. a(15) = 3^2-1 * 5^2-1 = 8*24 = 192 [Jon Perry, Aug 24 2010]

G.f. = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + ...

MAPLE

Jinvk := proc(n, k) local a, f, p ; a := 1 ; for f in ifactors(n)[2] do p := op(1, f) ; a := a*(1-p^k) ; end do: a ; end proc:

A046970 := proc(n) Jinvk(n, 2) ; end proc: # R. J. Mathar, Jul 04 2011

MATHEMATICA

muDD[d_] := MoebiusMu[d]*d^2; Table[Plus @@ muDD[Divisors[n]], {n, 60}] (Lopez)

Flatten[Table[{ x = FactorInteger[n]; p = 1; For[i = 1, i <= Length[x], i++, p = p*(1 - x[[i]][[1]]^2)]; p}, {n, 1, 50, 1}]] (* Jon Perry, Aug 24 2010 *)

a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ d], {d, Divisors @ n}]] (* Michael Somos, Jan 11 2014 *)

a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (1 - #[[1]]^2 & /@ FactorInteger @ n)] (* Michael Somos, Jan 11 2014 *)

PROG

(PARI) A046970(n)=sumdiv(n, d, d^2*moebius(d)) \\ Benoit Cloitre

(Haskell)

a046970 = product . map ((1 -) . (^ 2)) . a027748_row

-- Reinhard Zumkeller, Jan 19 2012

(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X*p^2) / (1 - X))[n])} /* Michael Somos, Jan 11 2014 */

CROSSREFS

Cf. A007434, A027641, A027642, A063453, A023900.

Cf. A027748.

Sequence in context: A144457 A220138 A146975 * A058936 A002017 A278292

Adjacent sequences:  A046967 A046968 A046969 * A046971 A046972 A046973

KEYWORD

sign,easy,mult

AUTHOR

Douglas Stoll, dougstoll(AT)email.msn.com

EXTENSIONS

Corrected and extended by Vladeta Jovovic, Jul 25 2001

Additional comments from Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Jul 01 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 01:14 EST 2016. Contains 278902 sequences.