|
|
A046969
|
|
Denominators of coefficients in Stirling's expansion for log(Gamma(z)).
|
|
4
|
|
|
12, 360, 1260, 1680, 1188, 360360, 156, 122400, 244188, 125400, 5796, 1506960, 300, 93960, 2492028, 505920, 396, 2418179400, 444, 21106800, 3109932, 118680, 25380, 104700960, 6468, 324360, 2283876, 382800, 40356, 201025024200, 732
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Conjecture I: if n > 2, then a(A005382(n))/12 is prime.
Conjecture II: if a(n)/12 is prime, then a(n-1)/12 - (n-1), a(n)/12 - n and a(n+2)/12 - (n+2) are multiples of 6. (End)
|
|
REFERENCES
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
|
|
LINKS
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
From denominator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2pi)*z^(z-0.5)*exp(-z)*exp(J(z)).
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[ Denominator[ BernoulliB[2n]/(2n(2n - 1))], {n, 31}] (* Robert G. Wilson v, Sep 21 2006 *)
s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^62;
|
|
PROG
|
(PARI) a(n)=if(n<1, 0, denominator(bernfrac(2*n)/(2*n)/(2*n-1)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
frac,nonn,nice
|
|
AUTHOR
|
Douglas Stoll, dougstoll(AT)email.msn.com
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|