login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046966
a(n) is the smallest number > a(n-1) such that a(1)*a(2)*...*a(n) + 1 is prime.
19
1, 2, 3, 5, 6, 9, 12, 16, 22, 25, 29, 31, 35, 47, 57, 61, 66, 79, 81, 108, 114, 148, 163, 172, 185, 198, 203, 205, 236, 265, 275, 282, 294, 312, 344, 359, 377, 397, 398, 411, 427, 431, 493, 512, 589, 647, 648, 660, 708, 719, 765, 887, 911, 916, 935, 1062, 1093
OFFSET
1,2
REFERENCES
H. Dubner, Recursive Prime Generating Sequences, Table 4 pp. 173 Journal of Recreational Mathematics 29(3) 1998 Baywood NY.
LINKS
Charles R Greathouse IV and T. D. Noe, Table of n, a(n) for n = 1..500 (first 200 terms from Noe)
EXAMPLE
1*2*3*5 + 1 = 31 is prime.
MATHEMATICA
a[1] = 1; p[1] = 1;
a[n_] := a[n] = For[an = a[n-1] + 1, True, an++, pn = p[n-1]*an; If[ PrimeQ[pn+1], p[n] = pn; Return[an] ] ];
Table[a[n], {n, 1, 60}]
(* Jean-François Alcover, Sep 17 2012 *)
Module[{cc={1}, k}, Do[k=Last[cc]+1; While[!PrimeQ[Times@@Join[cc, {k}]+1], k++]; AppendTo[cc, k], {60}]; cc] (* Harvey P. Dale, Jan 21 2013 *)
nxt[{t_, a_}]:=Module[{k=a+1}, While[CompositeQ[t*k+1], k++]; {t*k, k}]; NestList[nxt, {1, 1}, 60][[All, 2]] (* Harvey P. Dale, May 22 2021 *)
PROG
(PARI) first(n)=my(v=vector(n), N=1, t=1); v[1]=1; for(k=2, n, while(!ispseudoprime(1 + N*t++), ); N*=v[k]=t); v \\ Charles R Greathouse IV, Apr 07 2020
CROSSREFS
Cf. A046972.
Sequence in context: A008768 A067593 A084993 * A225973 A329165 A292444
KEYWORD
nonn,nice
EXTENSIONS
More terms from Jason Earls, Jan 25 2002
Definition corrected by T. D. Noe, Feb 14 2007
STATUS
approved