login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008768
Expansion of (1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
1
1, 1, 2, 3, 5, 6, 9, 12, 16, 20, 26, 32, 40, 48, 58, 69, 82, 95, 111, 128, 147, 167, 190, 214, 241, 269, 300, 333, 369, 406, 447, 490, 536, 584, 636, 690, 748, 808, 872, 939, 1010, 1083, 1161, 1242, 1327, 1415, 1508, 1604, 1705, 1809, 1918, 2031, 2149, 2270
OFFSET
0,3
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-5) + a(n-6) - a(n-7) + 2*a(n-8) - a(n-9); a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=6, a(6)=9, a(7)=12, a(8)=16. - Harvey P. Dale, Jul 06 2011
a(n) = floor((2*n^3 + 9*n^2 + 72*n + 160)/144). - Tani Akinari, May 13 2014
MAPLE
seq(coeff(series((1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
CoefficientList[Series[(1+x^7)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {1, 1, 2, 3, 5, 6, 9, 12, 16}, 50] (* Harvey P. Dale, Jul 06 2011 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 10 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008768_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008768_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[1, 1, 2, 3, 5, 6, 9, 12, 16];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 10 2019
CROSSREFS
Sequence in context: A212864 A026317 A361848 * A067593 A084993 A046966
KEYWORD
nonn
STATUS
approved