login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008770
Expansion of (1+x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
1
1, 1, 2, 3, 5, 6, 9, 11, 15, 19, 24, 29, 37, 44, 53, 63, 75, 87, 102, 117, 135, 154, 175, 197, 223, 249, 278, 309, 343, 378, 417, 457, 501, 547, 596, 647, 703, 760, 821, 885, 953, 1023, 1098, 1175, 1257, 1342, 1431, 1523, 1621, 1721, 1826, 1935, 2049, 2166, 2289, 2415, 2547, 2683
OFFSET
0,3
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-5) + a(n-6) - a(n-7) + 2*a(n-8) - a(n-9); a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=6, a(6)=9, a(7)=11, a(8)=15. - Harvey P. Dale, Oct 02 2012
MAPLE
seq(coeff(series((1+x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
CoefficientList[Series[(x^9+1)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x, 0, 60}], x] (* or *) LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {1, 1, 2, 3, 5, 6, 9, 11, 15}, 60] (* Harvey P. Dale, Oct 02 2012 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 10 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008770_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^9)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008770_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[1, 1, 2, 3, 5, 6, 9, 11, 15];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 10 2019
CROSSREFS
Sequence in context: A008771 A309831 A309830 * A347548 A230515 A030068
KEYWORD
nonn
EXTENSIONS
Terms a(45) onward added by G. C. Greubel, Sep 10 2019
STATUS
approved