login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008773
Expansion of (1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
1
1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 35, 40, 49, 57, 69, 78, 93, 105, 123, 138, 159, 177, 203, 224, 253, 279, 313, 342, 381, 415, 459, 498, 547, 591, 647, 696, 757, 813, 881, 942, 1017, 1085, 1167, 1242, 1331, 1413, 1511, 1600, 1705, 1803, 1917, 2022, 2145
OFFSET
0,3
MAPLE
seq(coeff(series((1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
CoefficientList[Series[(1+x^12)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x, 0, 60}], x] (* Stefan Steinerberger, Apr 08 2006 *)
Join[{1, 1, 2}, LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {3, 5, 6, 9, 11, 15, 18, 23, 27, 35}, 60]] (* G. C. Greubel, Sep 10 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 10 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008773_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008773_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[3, 5, 6, 9, 11, 15, 18, 23, 27, 35];; for n in [11..60] do a[n]:=a[n-1] +a[n-2]-2*a[n-5]+a[n-8]+a[n-9]-a[n-10]; od; Concatenation([1, 1, 2], a); # G. C. Greubel, Sep 10 2019
CROSSREFS
Sequence in context: A001400 A372703 A350897 * A008772 A351003 A008771
KEYWORD
nonn
EXTENSIONS
More terms from Stefan Steinerberger, Apr 08 2006
STATUS
approved