login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008775
Expansion of e.g.f. 2/(1 + cos x * cosh x) in powers of x^4.
3
1, 2, 272, 261392, 923578112, 8687146706432, 179207715900772352, 7123449535546491471872, 497301503279765920504020992, 56869795869126246818618490355712, 10089974849557868979545831504092332032, 2659150134955694814127423122143061660925952
OFFSET
0,2
REFERENCES
Goulden and Jackson, Combin. Enum., Wiley, 1983 p. 287.
LINKS
FORMULA
a(n) ~ 8 * (4*n)! / ((cosh(r)*sin(r) - cos(r)*sinh(r)) * r^(4*n+1)), where r = 1.875104068711961166445308241... is the root of the equation cosh(r)*cos(r) = -1. See A076417. - Vaclav Kotesovec, Sep 15 2014
MAPLE
seq(factorial(4*n)*coeff(series(2/(1+cos(x)*cosh(x)), x, 4*n+1), x, 4*n), n = 0..15); # G. C. Greubel, Sep 11 2019
MATHEMATICA
Table[(CoefficientList[Series[2/(1 + Cos[x]*Cosh[x]), {x, 0, 60}], x] * Range[0, 60]! )[[n]], {n, 1, 61, 4}] (* Vaclav Kotesovec, Sep 15 2014 *)
PROG
(PARI) my(x='x+O('x^60)); v=Vec(serlaplace(2/(1+cos(x)*cosh(x)) )); vector(#v\4, n, v[4*n-3]) \\ G. C. Greubel, Sep 11 2019
(Magma) m:=70; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 2/(1+Cos(x)*Cosh(x)) )); [Factorial(4*n-4)*b[4*n-3]: n in [1..Floor(m/4)]]; // G. C. Greubel, Sep 11 2019
(Sage) [factorial(4*n)*( 2/(1+cos(x)*cosh(x)) ).series(x, 4*n+2).list()[4*n] for n in (0..30)]; # G. C. Greubel, Sep 11 2019
CROSSREFS
Sequence in context: A007512 A048534 A135696 * A237993 A174710 A200168
KEYWORD
nonn
EXTENSIONS
More terms from Vaclav Kotesovec, Sep 15 2014
STATUS
approved