OFFSET
0,2
REFERENCES
Goulden and Jackson, Combin. Enum., Wiley, 1983 p. 287.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..125
FORMULA
a(n) ~ 8 * (4*n)! / ((cosh(r)*sin(r) - cos(r)*sinh(r)) * r^(4*n+1)), where r = 1.875104068711961166445308241... is the root of the equation cosh(r)*cos(r) = -1. See A076417. - Vaclav Kotesovec, Sep 15 2014
MAPLE
seq(factorial(4*n)*coeff(series(2/(1+cos(x)*cosh(x)), x, 4*n+1), x, 4*n), n = 0..15); # G. C. Greubel, Sep 11 2019
MATHEMATICA
Table[(CoefficientList[Series[2/(1 + Cos[x]*Cosh[x]), {x, 0, 60}], x] * Range[0, 60]! )[[n]], {n, 1, 61, 4}] (* Vaclav Kotesovec, Sep 15 2014 *)
PROG
(PARI) my(x='x+O('x^60)); v=Vec(serlaplace(2/(1+cos(x)*cosh(x)) )); vector(#v\4, n, v[4*n-3]) \\ G. C. Greubel, Sep 11 2019
(Magma) m:=70; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 2/(1+Cos(x)*Cosh(x)) )); [Factorial(4*n-4)*b[4*n-3]: n in [1..Floor(m/4)]]; // G. C. Greubel, Sep 11 2019
(Sage) [factorial(4*n)*( 2/(1+cos(x)*cosh(x)) ).series(x, 4*n+2).list()[4*n] for n in (0..30)]; # G. C. Greubel, Sep 11 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vaclav Kotesovec, Sep 15 2014
STATUS
approved