OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1,-1,1,-1,2,-1).
FORMULA
G.f.: (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
MAPLE
seq(coeff(series((1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
CoefficientList[Series[(1+x^11)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x, 0, 60}], x] (* Wesley Ivan Hurt, Apr 08 2017 *)
Join[{1, 1}, LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {2, 3, 5, 6, 9, 11, 15, 18, 23}, 60]] (* Vincenzo Librandi, Apr 09 2017 *)
PROG
(PARI) Vec((1+x^11)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4) + O(x^60)) \\ Michel Marcus, Apr 08 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008772_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008772_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[2, 3, 5, 6, 9, 11, 15, 18, 23];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; Concatenation([1, 1], a); # G. C. Greubel, Sep 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms added by G. C. Greubel, Sep 10 2019
STATUS
approved