login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008772
Expansion of (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
1
1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 28, 35, 41, 50, 59, 70, 81, 95, 109, 126, 143, 163, 184, 208, 232, 260, 289, 321, 354, 391, 429, 471, 514, 561, 610, 663, 717, 776, 837, 902, 969, 1041, 1115, 1194, 1275, 1361, 1450, 1544, 1640, 1742, 1847, 1957, 2070, 2189, 2311, 2439, 2570, 2707
OFFSET
0,3
LINKS
FORMULA
G.f.: (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
MAPLE
seq(coeff(series((1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
CoefficientList[Series[(1+x^11)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x, 0, 60}], x] (* Wesley Ivan Hurt, Apr 08 2017 *)
Join[{1, 1}, LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {2, 3, 5, 6, 9, 11, 15, 18, 23}, 60]] (* Vincenzo Librandi, Apr 09 2017 *)
PROG
(PARI) Vec((1+x^11)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4) + O(x^60)) \\ Michel Marcus, Apr 08 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008772_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008772_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[2, 3, 5, 6, 9, 11, 15, 18, 23];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; Concatenation([1, 1], a); # G. C. Greubel, Sep 10 2019
CROSSREFS
Sequence in context: A372703 A350897 A008773 * A351003 A008771 A309831
KEYWORD
nonn
EXTENSIONS
More terms added by G. C. Greubel, Sep 10 2019
STATUS
approved