Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 29 2024 15:45:09
%S 1,1,2,3,5,6,9,11,15,18,23,28,35,41,50,59,70,81,95,109,126,143,163,
%T 184,208,232,260,289,321,354,391,429,471,514,561,610,663,717,776,837,
%U 902,969,1041,1115,1194,1275,1361,1450,1544,1640,1742,1847,1957,2070,2189,2311,2439,2570,2707
%N Expansion of (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
%H Vincenzo Librandi, <a href="/A008772/b008772.txt">Table of n, a(n) for n = 0..2000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-1,-1,1,-1,2,-1).
%F G.f.: (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
%p seq(coeff(series((1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # _G. C. Greubel_, Sep 10 2019
%t CoefficientList[Series[(1+x^11)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x,0,60}], x] (* _Wesley Ivan Hurt_, Apr 08 2017 *)
%t Join[{1, 1}, LinearRecurrence[{2,-1,1,-1,-1,1,-1,2,-1}, {2,3,5,6,9,11,15, 18,23}, 60]] (* _Vincenzo Librandi_, Apr 09 2017 *)
%o (PARI) Vec((1+x^11)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4) + O(x^60)) \\ _Michel Marcus_, Apr 08 2017
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // _G. C. Greubel_, Sep 10 2019
%o (Sage)
%o def A008772_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P((1+x^11)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
%o A008772_list(60) # _G. C. Greubel_, Sep 10 2019
%o (GAP) a:=[2,3,5,6,9,11,15,18,23];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; Concatenation([1,1], a); # _G. C. Greubel_, Sep 10 2019
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E More terms added by _G. C. Greubel_, Sep 10 2019