login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008769
Expansion of (1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
1
1, 1, 2, 3, 5, 6, 9, 11, 16, 19, 25, 30, 39, 45, 56, 65, 79, 90, 107, 121, 142, 159, 183, 204, 233, 257, 290, 319, 357, 390, 433, 471, 520, 563, 617, 666, 727, 781, 848, 909, 983, 1050, 1131, 1205, 1294, 1375, 1471, 1560, 1665, 1761, 1874, 1979, 2101, 2214, 2345, 2467, 2608, 2739
OFFSET
0,3
COMMENTS
Molien series for 4-dimensional group of structure 2^{1+4}_{+}.S_3 and order 192, arising from complete weight enumerators of Euclidean self-dual linear codes over GF(4).
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
FORMULA
a(n) = 1 + 5*n/72 - n^2/12 + n^3/72 + 1/2*floor(n/4) + 1/3*floor(n/3) + (1/4 + n/4)*floor(n/2) + 1/2*floor((1 + n)/4) + 1/3*floor((1 + n)/3). - Vaclav Kotesovec, Apr 29 2014
a(n) = round((n+1)*(2*n^2 + 4*n + 83 + 9*(-1)^n)/144). - Tani Akinari, May 13 2014
MAPLE
seq(coeff(series((1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
CoefficientList[Series[(1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 29 2014 *)
PROG
(PARI) a(n)=round((n+1)*(2*n^2+4*n+83+9*(-1)^n)/144) \\ Tani Akinari, May 13 2014
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008769_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008769_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[1, 1, 2, 3, 5, 6, 9, 11, 16, 19];; for n in [11..60] do a[n]:=a[n-1] +a[n-2]-2*a[n-5]+a[n-8]+a[n-9]-a[n-10]; od; a; # G. C. Greubel, Sep 10 2019
CROSSREFS
Sequence in context: A230515 A030068 A239958 * A115270 A339277 A027588
KEYWORD
nonn,easy
EXTENSIONS
Terms a(45) onward added by G. C. Greubel, Sep 10 2019
STATUS
approved