OFFSET
0,3
FORMULA
G.f.: (1/(1 - x^3)) * Product_{k>=0} 1/(1 - x^(2^k)).
G.f.: (1/(1 - x)) * Product_{k>=0} (1 + x^(2^(k+1))/(1 - x^(2^k))).
a(n) = [x^(2*n)] Product_{k>=0} (1 + x^(2^(k+1))/(1 - x^(2^k))).
a(n) = Sum_{k=0..n} U(k,-1/2) * A000123(n-k), where U(k,x) is the Chebyshev U-polynomial.
EXAMPLE
a(4) = 5 because we have [4, 4], [2, 2, 2, 2], [2, 2, 2, 1, 1], [2, 2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 29 2020
STATUS
approved