login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339277
Number of partitions of 2*n into powers of 2 where every part appears at least 2 times.
1
1, 1, 2, 3, 5, 6, 9, 11, 16, 19, 25, 30, 39, 45, 56, 65, 81, 92, 111, 127, 152, 171, 201, 226, 265, 295, 340, 379, 435, 480, 545, 601, 682, 747, 839, 920, 1031, 1123, 1250, 1361, 1513, 1640, 1811, 1963, 2164, 2335, 2561, 2762, 3027, 3253, 3548, 3813, 4153, 4448, 4827, 5167
OFFSET
0,3
FORMULA
G.f.: (1/(1 - x^3)) * Product_{k>=0} 1/(1 - x^(2^k)).
G.f.: (1/(1 - x)) * Product_{k>=0} (1 + x^(2^(k+1))/(1 - x^(2^k))).
a(n) = [x^(2*n)] Product_{k>=0} (1 + x^(2^(k+1))/(1 - x^(2^k))).
a(n) = Sum_{k=0..n} U(k,-1/2) * A000123(n-k), where U(k,x) is the Chebyshev U-polynomial.
EXAMPLE
a(4) = 5 because we have [4, 4], [2, 2, 2, 2], [2, 2, 2, 1, 1], [2, 2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 55; CoefficientList[Series[(1/(1 - x^3)) Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
A000123[0] = 1; A000123[n_] := A000123[n] = A000123[Floor[n/2]] + A000123[n - 1]; a[n_] := Sum[ChebyshevU[k, -1/2] A000123[n - k], {k, 0, n}]; Table[a[n], {n, 0, 55}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 29 2020
STATUS
approved