Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Nov 29 2020 22:48:18
%S 1,1,2,3,5,6,9,11,16,19,25,30,39,45,56,65,81,92,111,127,152,171,201,
%T 226,265,295,340,379,435,480,545,601,682,747,839,920,1031,1123,1250,
%U 1361,1513,1640,1811,1963,2164,2335,2561,2762,3027,3253,3548,3813,4153,4448,4827,5167
%N Number of partitions of 2*n into powers of 2 where every part appears at least 2 times.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F G.f.: (1/(1 - x^3)) * Product_{k>=0} 1/(1 - x^(2^k)).
%F G.f.: (1/(1 - x)) * Product_{k>=0} (1 + x^(2^(k+1))/(1 - x^(2^k))).
%F a(n) = [x^(2*n)] Product_{k>=0} (1 + x^(2^(k+1))/(1 - x^(2^k))).
%F a(n) = Sum_{k=0..n} U(k,-1/2) * A000123(n-k), where U(k,x) is the Chebyshev U-polynomial.
%e a(4) = 5 because we have [4, 4], [2, 2, 2, 2], [2, 2, 2, 1, 1], [2, 2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
%t nmax = 55; CoefficientList[Series[(1/(1 - x^3)) Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
%t A000123[0] = 1; A000123[n_] := A000123[n] = A000123[Floor[n/2]] + A000123[n - 1]; a[n_] := Sum[ChebyshevU[k, -1/2] A000123[n - k], {k, 0, n}]; Table[a[n], {n, 0, 55}]
%Y Cf. A000079, A000123, A007690, A018819, A339279.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Nov 29 2020