login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224956 Number of partitions of n where the difference between consecutive parts is at most 2. 10
1, 1, 2, 3, 5, 6, 9, 11, 16, 19, 26, 31, 42, 50, 65, 78, 100, 119, 149, 178, 222, 263, 322, 382, 465, 549, 660, 778, 932, 1093, 1299, 1520, 1798, 2096, 2464, 2868, 3357, 3892, 4536, 5247, 6096, 7028, 8133, 9357, 10795, 12388, 14244, 16309, 18706, 21367, 24440, 27857, 31788, 36157 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also (by taking the conjugate), a(n) is the number of partitions of n such that all parts, with the possible exception of the largest are repeated at most twice. - Geoffrey Critzer, Sep 30 2013

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

O.g.f.: 1 + sum(k>=1, x^k/(1-x^k) * prod(i=1..k-1, 1+x^i+x^(2*i) ) ). - Geoffrey Critzer, Sep 30 2013

a(n) = Sum_{k=0..2} A238353(n,k). - Alois P. Heinz, Mar 09 2014

EXAMPLE

The a(7)=11 such partitions of 7 are

01:  [ 1 1 1 1 1 1 1 ]

02:  [ 2 1 1 1 1 1 ]

03:  [ 2 2 1 1 1 ]

04:  [ 2 2 2 1 ]

05:  [ 3 1 1 1 1 ]

06:  [ 3 2 1 1 ]

07:  [ 3 2 2 ]

08:  [ 3 3 1 ]

09:  [ 4 2 1 ]

10:  [ 4 3 ]

11:  [ 7 ]

The a(7)=11 partitions with no part (excepting the largest) repeated more than twice are the conjugates of the above respectively:

01:  [7]

02:  [6 1]

03:  [5 2]

04:  [4 3]

05:  [5 1 1]

06:  [4 2 1]

07:  [3 3 1]

08:  [3 2 2]

09:  [3 2 1 1]

10:  [2 2 2 1]

11:  [1 1 1 1 1 1 1]

MAPLE

b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(b(n-i*j, i-1, `if`(j>0, 0, 1)), j=t..n/i)))

    end:

a:= n-> add(b(n, k, 1), k=0..n):

seq(a(n), n=0..70);  #  Alois P. Heinz, May 01 2013

MATHEMATICA

nn=53; CoefficientList[Series[1+Sum[x^k/(1-x^k)Product[1+x^i+x^(2i), {i, 1, k-1}], {k, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 30 2013 *)

b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, If[j>0, 0, 1]], {j, t, n/i}]]]; a[n_] := Sum[b[n, k, 1], {k, 0, n}]; Table[a[n], {n, 0, 70}] (* Jean-Fran├žois Alcover, Jun 19 2015, after Alois P. Heinz *)

PROG

(PARI)

N=66;  q = 'q + O('q^N);

Vec ( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1, k-1, 1+q^i+q^(2*i) ) ) )

\\ Joerg Arndt, Mar 08 2014

CROSSREFS

Sequences "number of partitions with max diff d": A000005 (d=0, for n>=1), A034296 (d=1), A224956 (d=2), A238863 (d=3), A238864 (d=4), A238865 (d=5), A238866 (d=6), A238867 (d=7), A238868 (d=8), A238869 (d=9), A000041 (d --> infinity).

Sequence in context: A115270 A339277 A027588 * A131995 A060714 A241819

Adjacent sequences:  A224953 A224954 A224955 * A224957 A224958 A224959

KEYWORD

nonn

AUTHOR

Joerg Arndt, Apr 21 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 03:53 EDT 2021. Contains 346283 sequences. (Running on oeis4.)