login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224956
Number of partitions of n where the difference between consecutive parts is at most 2.
10
1, 1, 2, 3, 5, 6, 9, 11, 16, 19, 26, 31, 42, 50, 65, 78, 100, 119, 149, 178, 222, 263, 322, 382, 465, 549, 660, 778, 932, 1093, 1299, 1520, 1798, 2096, 2464, 2868, 3357, 3892, 4536, 5247, 6096, 7028, 8133, 9357, 10795, 12388, 14244, 16309, 18706, 21367, 24440, 27857, 31788, 36157
OFFSET
0,3
COMMENTS
Also (by taking the conjugate), a(n) is the number of partitions of n such that all parts, with the possible exception of the largest are repeated at most twice. - Geoffrey Critzer, Sep 30 2013
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
O.g.f.: 1 + sum(k>=1, x^k/(1-x^k) * prod(i=1..k-1, 1+x^i+x^(2*i) ) ). - Geoffrey Critzer, Sep 30 2013
a(n) = Sum_{k=0..2} A238353(n,k). - Alois P. Heinz, Mar 09 2014
a(n) ~ exp(2*Pi*sqrt(n)/3) / (6 * n^(3/4)). - Vaclav Kotesovec, Jan 26 2022
EXAMPLE
The a(7)=11 such partitions of 7 are
01: [ 1 1 1 1 1 1 1 ]
02: [ 2 1 1 1 1 1 ]
03: [ 2 2 1 1 1 ]
04: [ 2 2 2 1 ]
05: [ 3 1 1 1 1 ]
06: [ 3 2 1 1 ]
07: [ 3 2 2 ]
08: [ 3 3 1 ]
09: [ 4 2 1 ]
10: [ 4 3 ]
11: [ 7 ]
The a(7)=11 partitions with no part (excepting the largest) repeated more than twice are the conjugates of the above respectively:
01: [7]
02: [6 1]
03: [5 2]
04: [4 3]
05: [5 1 1]
06: [4 2 1]
07: [3 3 1]
08: [3 2 2]
09: [3 2 1 1]
10: [2 2 2 1]
11: [1 1 1 1 1 1 1]
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, `if`(j>0, 0, 1)), j=t..n/i)))
end:
a:= n-> add(b(n, k, 1), k=0..n):
seq(a(n), n=0..70); # Alois P. Heinz, May 01 2013
MATHEMATICA
nn=53; CoefficientList[Series[1+Sum[x^k/(1-x^k)Product[1+x^i+x^(2i), {i, 1, k-1}], {k, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 30 2013 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, If[j>0, 0, 1]], {j, t, n/i}]]]; a[n_] := Sum[b[n, k, 1], {k, 0, n}]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Jun 19 2015, after Alois P. Heinz *)
PROG
(PARI)
N=66; q = 'q + O('q^N);
Vec ( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1, k-1, 1+q^i+q^(2*i) ) ) )
\\ Joerg Arndt, Mar 08 2014
CROSSREFS
Sequences "number of partitions with max diff d": A000005 (d=0, for n>=1), A034296 (d=1), A224956 (d=2), A238863 (d=3), A238864 (d=4), A238865 (d=5), A238866 (d=6), A238867 (d=7), A238868 (d=8), A238869 (d=9), A000041 (d --> infinity).
Sequence in context: A115270 A339277 A027588 * A131995 A363066 A060714
KEYWORD
nonn
AUTHOR
Joerg Arndt, Apr 21 2013
STATUS
approved