OFFSET
1,1
COMMENTS
There are potentially 15 ways for each number to become a square--by prepending a digit between 1 and 9, or appending one of {0,1,4,5,6,9}. However, only 74 of the first 10000 terms can become a square in more than one way.
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Christian N. K. Anderson, List of squares that can be formed by concatenating one digit to the first 10000 terms.
Christian N. K. Anderson, Ulam spiral of a(n), with brighter colors corresponding to the number of ways a term may become a square.
EXAMPLE
a(4)=6 because, though 6 is not a square, it can become a square by prepending a 1 to become 16. We can also obtain 36 and 64.
MAPLE
isA224955 := proc(n)
local p, ndgs;
if issqr(n) then
return false;
else
ndgs := convert(n, base, 10) ;
for p from 1 to 9 do
[op(ndgs), p] ;
add(op(i, %)*10^(i-1), i=1..nops(%)) ;
if issqr(%) then
return true;
end if;
end do:
for p in {0, 1, 4, 5, 6, 9} do
[p, op(ndgs)] ;
add(op(i, %)*10^(i-1), i=1..nops(%)) ;
if issqr(%) then
return true;
end if;
end do:
return false;
end if;
end proc:
n := 1;
c := 1;
while n <= 10000 do
if isA224955(c) then
printf("%d %d\n", n, c) ;
n := n+1 ;
end if;
c := c+1 ;
end do: # R. J. Mathar, Mar 14 2016
MATHEMATICA
Module[{nn=300, pre=Range[9], app={0, 1, 4, 5, 6, 9}}, Select[Range[nn], (!IntegerQ[ Sqrt[ #]]) && (AnyTrue[Sqrt[pre*10^IntegerLength[#]+#], IntegerQ] || AnyTrue[ Sqrt[ 10#+app], IntegerQ])&]] (* Harvey P. Dale, Feb 27 2022 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Kevin L. Schwartz and Christian N. K. Anderson, Apr 21 2013
STATUS
approved