login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224952 Numbers ((binomial(4*p-1,2*p-1) mod p^5)-3)/p^3, where p = prime(n). 0
0, 8, 14, 22, 68, 24, 174, 330, 151, 235, 179, 79, 406, 1566, 1261, 2396, 3044, 3662, 3189, 1976, 831, 4783, 3291, 915, 2692, 9389, 6846, 1263, 10937, 6296, 14083, 1399, 14988, 8322, 12865, 1681, 13655, 5901 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Denote T(p) = binomial(4p-1, 2p-1) mod p^5, where p is the n-th prime. Theorem 30 in the link below states that T(p) = binomial(4p, p) - 1 for p > 5. This is difficult to empirically demonstrate as T(n) = 3, 219, 1753, 7549... <> binomial(4p, p) - 1 (binomial(4p-1, 2p-1) - binomial(4p, p)+1)/p^5 = 27/32, 44/27, 87533/3125, 19681560/16807...not integer.

Thus the identity seems to violate both the left and right hand sides of the identity a == b (mod m) if and only if m|(a-b).

It is of interest to note however that T(p) mod p = 3 for p > 3 and that T(p) - 3 is divisible by p^3 (this sequence).

LINKS

Table of n, a(n) for n=1..38.

R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv preprint arXiv:1111.3057 [math.NT], 2011.

MAPLE

p:= n-> ithprime(n): T:= n-> binomial(4*p(n)-1, 2*p(n)-1) mod p(n)^5: seq((T(n)-3)/p(n)^3), n=1..40)

MATHEMATICA

a[n_] := Module[{p = Prime[n]}, (Mod[Binomial[4p-1, 2p-1], p^5]-3)/p^3]; Array[a, 40] (* Jean-Fran├žois Alcover, Feb 16 2019 *)

CROSSREFS

Sequence in context: A063216 A238290 A100315 * A248700 A001049 A134445

Adjacent sequences:  A224949 A224950 A224951 * A224953 A224954 A224955

KEYWORD

nonn

AUTHOR

Gary Detlefs, Apr 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 04:45 EDT 2021. Contains 347652 sequences. (Running on oeis4.)