The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238353 Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with maximal ascent k, n >= 0, 0 <= k <= n. 14
 1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 2, 3, 1, 1, 0, 0, 4, 3, 2, 1, 1, 0, 0, 2, 6, 3, 2, 1, 1, 0, 0, 4, 6, 6, 2, 2, 1, 1, 0, 0, 3, 10, 6, 5, 2, 2, 1, 1, 0, 0, 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0, 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0, 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0, 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Reversed rows and also the columns converge to A002865 (setting A002865(0)=0). Column k=0 is A000005 (n>=1), column k=1 is A237665. Row sums are A000041. Sum_{i=0..k} T(n,i) for k=0-9 gives: A000005, A034296, A224956, A238863, A238864, A238865, A238866, A238867, A238868, A238869. LINKS Joerg Arndt and Alois P. Heinz, Rows 0..140, flattened FORMULA G.f. for column k>=1: sum(j>=1, q^j/(1-q^j) * (prod(i=1..j-1, (1-q^((k+1)*i))/(1-q^i) ) - prod(i=1..j-1, (1-q^(k*i))/(1-q^i) ) )  ), see the comment about the g.f. in A238863. EXAMPLE Triangle starts: 00:  1; 01:  1,  0; 02:  2,  0,  0; 03:  2,  1,  0,  0; 04:  3,  1,  1,  0,  0; 05:  2,  3,  1,  1,  0,  0; 06:  4,  3,  2,  1,  1,  0, 0; 07:  2,  6,  3,  2,  1,  1, 0, 0; 08:  4,  6,  6,  2,  2,  1, 1, 0, 0; 09:  3, 10,  6,  5,  2,  2, 1, 1, 0, 0; 10:  4, 11, 11,  6,  4,  2, 2, 1, 1, 0, 0; 11:  2, 16, 13, 10,  5,  4, 2, 2, 1, 1, 0, 0; 12:  6, 17, 19, 12,  9,  4, 4, 2, 2, 1, 1, 0, 0; 13:  2, 24, 24, 18, 11,  8, 4, 4, 2, 2, 1, 1, 0, 0; 14:  4, 27, 34, 22, 17, 10, 7, 4, 4, 2, 2, 1, 1, 0, 0; 15:  4, 35, 39, 33, 20, 15, 9, 7, 4, 4, 2, 2, 1, 1, 0, 0; ... The 7 partitions of 5 and their maximal ascents are: 1:  [ 1 1 1 1 1 ]   0 2:  [ 1 1 1 2 ]   1 3:  [ 1 1 3 ]   2 4:  [ 1 2 2 ]   1 5:  [ 1 4 ]   3 6:  [ 2 3 ]   1 7:  [ 5 ]   0 There are 2 rows with 0 ascents, 3 with 1 ascent, 1 for ascents 2 and 3, giving row 5 of the triangle. MAPLE b:= proc(n, i, t) option remember; `if`(n=0, 1,       `if`(i<1, 0, b(n, i-1, t)+`if`(i>n, 0, (p->       `if`(t=0 or t-i=0, p, add(coeff(p, x, j)*x^       max(j, t-i), j=0..degree(p))))(b(n-i, i, i)))))     end: T:= n-> (p-> seq(coeff(p, x, k), k=0..n))(b(n\$2, 0)): seq(T(n), n=0..15); MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, b[n, i-1, t] + If[i>n, 0, Function[{p}, If[t == 0 || t-i == 0, p, Sum[Coefficient[p, x, j]*x^ Max[j, t-i], {j, 0, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, k], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *) CROSSREFS Cf. A238354 (partitions by minimal ascent). Sequence in context: A325227 A325188 A170978 * A238354 A161364 A143620 Adjacent sequences:  A238350 A238351 A238352 * A238354 A238355 A238356 KEYWORD nonn,tabl AUTHOR Joerg Arndt and Alois P. Heinz, Feb 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 08:08 EDT 2020. Contains 336274 sequences. (Running on oeis4.)