OFFSET
0,3
COMMENTS
Also the number of partitions of n such that all parts, with the possible exception of the largest are repeated at most three times (by taking conjugates).
The g.f. for "max difference d" is 1 + Sum_{k>=1} q^k/(1 - q^k) * Product_{i=1..k-1} (1 - q^((d+1)*i))/(1 - q^i), see cross references.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: 1 + Sum_{k>=1} (q^k/(1 - q^k)) * Product_{i=1..k-1} (1 - q^(4*i))/(1 - q^i).
a(n) = Sum_{k=0..3} A238353(n,k). - Alois P. Heinz, Mar 09 2014
a(n) ~ exp(Pi*sqrt(n/2)) / (2^(11/4) * n^(3/4)). - Vaclav Kotesovec, Jan 26 2022
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=0..min(3, n/i))))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> add(g(n, k), k=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1], {j, 0, Min[3, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
PROG
(PARI)
N=66; q = 'q + O('q^N);
Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1, k-1, (1-q^(4*i))/(1-q^i) ) ) )
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Mar 08 2014
STATUS
approved