OFFSET
0,3
COMMENTS
Case k=6,i=6 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
a(n) ~ sin(6*Pi/13) * 5^(1/4) * exp(2*Pi*sqrt(5*n/39)) / (3^(1/4) * 13^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 22 2015
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[1 / ((1 - x^(13*k-1)) * (1 - x^(13*k-2)) * (1 - x^(13*k-3)) * (1 - x^(13*k-4)) * (1 - x^(13*k-5)) * (1 - x^(13*k-8)) * (1 - x^(13*k-9)) * (1 - x^(13*k-10)) * (1 - x^(13*k-11)) * (1 - x^(13*k-12)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 22 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, May 08 2018
STATUS
approved