OFFSET
0,3
EXAMPLE
a(6) counts all of the 15 partitions of 7 except these 4: 61, 52, 511, 1111111.
MATHEMATICA
z = 60; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[p_] := f[p] = Max[p] - Min[p]; g[n_] := g[n] = IntegerPartitions[n];
Table[Count[g[n], p_ /; d[p] < f[p]], {n, 0, z}] (*A239954*)
Table[Count[g[n], p_ /; d[p] <= f[p]], {n, 0, z}] (*A239955*)
Table[Count[g[n], p_ /; d[p] == f[p]], {n, 0, z}] (*A239956*)
Table[Count[g[n], p_ /; d[p] > f[p]], {n, 0, z}] (*A034296*)
Table[Count[g[n], p_ /; d[p] >= f[p]], {n, 0, z}] (*A239958*)
ndpQ[p_]:=Module[{prt=Union[p]}, Length[prt]>=(Max[prt]-Min[prt])]; Table[Length[Select[ IntegerPartitions[ n], ndpQ]], {n, 0, 50}] (* Harvey P. Dale, Dec 31 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 30 2014
STATUS
approved