login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008766 Expansion of (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)). 2
1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 29, 36, 45, 54, 65, 77, 91, 106, 123, 141, 162, 184, 208, 234, 263, 293, 326, 361, 399, 439, 482, 527, 576, 627, 681, 738, 799, 862, 929, 999, 1073, 1150, 1231, 1315, 1404, 1496, 1592, 1692, 1797, 1905, 2018, 2135, 2257, 2383, 2514, 2649, 2790, 2935 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From Washington Bomfim, Jan 14 2021: (Start)

Let \n,m\ be the number of partitions of n into m non-distinct parts.

For n >= 1, \n,5\ = round((2*n^3-15*n^2+60*n-110*[n mod 2 = 0]-65*[n mod 2])/144).

For n >= 10, \n,5\ = A026811(n) - A026811(n-10).

(End)

LINKS

Washington Bomfim, Table of n, a(n) for n = 0..9999 (first 1000 terms from G. C. Greubel)

Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1,-1,1,-1,2,-1).

FORMULA

a(n)=round((2*N^3-15*N^2+60*N-110*[N mod 2=0]-65*[N mod 2])/144), where N=n+5. Washington Bomfim, Jan 14 2021

MAPLE

seq(coeff(series((1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019

MATHEMATICA

CoefficientList[Series[(1+x^5)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x, 0, 60}], x] (* or *) LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {1, 1, 2, 3, 5, 7, 10, 13, 18}, 60] (* Harvey P. Dale, Jul 24 2016 *)

PROG

(PARI) Vec((1+x^5)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4) +O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019

(Sage)

def A008766_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P((1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()

A008766_list(60) # G. C. Greubel, Sep 10 2019

(GAP) a:=[1, 1, 2, 3, 5, 7, 10, 13, 18];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 10 2019

(PARI) seq(x) = { a = vector(x+1); my(N = 5);

for(n=0, x, a[n+1]=round((2*N^3-15*N^2+60*N-110*!(N%2)-65*(N%2))/144); N++); a};

seq(60) \\ Washington Bomfim, Jan 14 2021

CROSSREFS

Cf. A026811, A001401.

Sequence in context: A338380 A309408 A347647 * A103232 A062684 A341912

Adjacent sequences:  A008763 A008764 A008765 * A008767 A008768 A008769

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Terms a(45) onward added by G. C. Greubel, Sep 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 15:04 EDT 2021. Contains 347607 sequences. (Running on oeis4.)