login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350897
Number of partitions of n such that 5*(smallest part) = (number of parts).
3
0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 55, 65, 74, 87, 99, 115, 131, 151, 172, 199, 226, 260, 298, 343, 393, 454, 522, 603, 696, 804, 929, 1076, 1243, 1438, 1664, 1924, 2222, 2567, 2961, 3413, 3931, 4520, 5193, 5959, 6827, 7811, 8928, 10186, 11607, 13208, 15008, 17028, 19297
OFFSET
1,7
COMMENTS
In general, for m >= 1, if g.f.= Sum_{k>=1} x^(m*k^2)/Product_{j=1..m*k-1} (1-x^j), then a(n) ~ r^2 * (m*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((m*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(Pi*m*(m - (m-2)*r^2)) * n^(3/4)), where r is the positive real root of the equation r^2 = 1 - r^m. - Vaclav Kotesovec, Oct 14 2024
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(5*k^2)/Product_{j=1..5*k-1} (1-x^j).
a(n) ~ c * exp(Pi*sqrt(r*n)) / n^(3/4), where r = 0.42067169741517... and c = 0.04778365700734... - Vaclav Kotesovec, Jan 26 2022
a(n) ~ r^2 * (5*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((5*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(5*Pi*(5 - 3*r^2)) * n^(3/4)), where r = 0.808730600479392... is the real root of the equation r^2 = 1 - r^5. - Vaclav Kotesovec, Oct 14 2024
MATHEMATICA
CoefficientList[Series[Sum[x^(5k^2)/Product[1-x^j, {j, 5k-1}], {k, 62}], {x, 0, 62}], x] (* Stefano Spezia, Jan 22 2022 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, sqrtint(N\5), x^(5*k^2)/prod(j=1, 5*k-1, 1-x^j))))
CROSSREFS
Column 5 of A350889.
Cf. A168657.
Sequence in context: A026810 A001400 A372703 * A008773 A008772 A351003
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 21 2022
STATUS
approved