OFFSET
1,7
COMMENTS
In general, for m >= 1, if g.f.= Sum_{k>=1} x^(m*k^2)/Product_{j=1..m*k-1} (1-x^j), then a(n) ~ r^2 * (m*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((m*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(Pi*m*(m - (m-2)*r^2)) * n^(3/4)), where r is the positive real root of the equation r^2 = 1 - r^m. - Vaclav Kotesovec, Oct 14 2024
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} x^(5*k^2)/Product_{j=1..5*k-1} (1-x^j).
a(n) ~ c * exp(Pi*sqrt(r*n)) / n^(3/4), where r = 0.42067169741517... and c = 0.04778365700734... - Vaclav Kotesovec, Jan 26 2022
a(n) ~ r^2 * (5*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((5*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(5*Pi*(5 - 3*r^2)) * n^(3/4)), where r = 0.808730600479392... is the real root of the equation r^2 = 1 - r^5. - Vaclav Kotesovec, Oct 14 2024
MATHEMATICA
CoefficientList[Series[Sum[x^(5k^2)/Product[1-x^j, {j, 5k-1}], {k, 62}], {x, 0, 62}], x] (* Stefano Spezia, Jan 22 2022 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, sqrtint(N\5), x^(5*k^2)/prod(j=1, 5*k-1, 1-x^j))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 21 2022
STATUS
approved