login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350896
Number of partitions of n such that 4*(smallest part) = (number of parts).
3
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 20, 22, 26, 30, 35, 40, 48, 55, 65, 76, 90, 105, 126, 147, 175, 206, 244, 286, 339, 396, 467, 545, 638, 741, 865, 1000, 1160, 1337, 1543, 1770, 2035, 2325, 2660, 3029, 3451, 3916, 4447, 5029, 5691, 6419, 7242, 8146, 9167, 10286, 11546, 12930, 14481, 16185
OFFSET
1,6
LINKS
FORMULA
G.f.: Sum_{k>=1} x^(4*k^2)/Product_{j=1..4*k-1} (1-x^j).
a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = (3 - sqrt(5))^(1/4) / (8*sqrt(5)) = 0.05226232058... - Vaclav Kotesovec, Jan 25 2022, updated Oct 13 2024
EXAMPLE
For n=7 there are a(7)=3 such partitions: [1,2,2,2], [1,1,2,3] and [1,1,1,4]. - R. J. Mathar, Jun 20 2022
MATHEMATICA
CoefficientList[Series[Sum[x^(4k^2)/Product[1-x^j, {j, 4k-1}], {k, 63}], {x, 0, 63}], x] (* Stefano Spezia, Jan 22 2022 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, sqrtint(N\4), x^(4*k^2)/prod(j=1, 4*k-1, 1-x^j))))
CROSSREFS
Column 4 of A350889.
Cf. A168657.
Sequence in context: A008755 A029006 A085756 * A008754 A029005 A132154
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 21 2022
STATUS
approved