login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008755
Expansion of (1+x^12)/((1-x)*(1-x^2)*(1-x^3)).
1
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 20, 22, 26, 30, 34, 38, 44, 48, 54, 60, 66, 72, 80, 86, 94, 102, 110, 118, 128, 136, 146, 156, 166, 176, 188, 198, 210, 222, 234, 246, 260, 272, 286, 300, 314, 328
OFFSET
0,3
FORMULA
a(n) = (6*n^2 -36*n +263 +9*(-1)^n +16*(-1)^n*cos(n*Pi/3))/36 for n >=7. - G. C. Greubel, Aug 04 2019
MATHEMATICA
CoefficientList[Series[(1+x^12)/(1-x)/(1-x^2)/(1-x^3), {x, 0, 60}], x] (* Harvey P. Dale, Aug 27 2013 *)
Join[{1, 1, 2, 3, 4, 5, 7}, Table[(6*n^2 -36*n +263 +9*(-1)^n + 16*(-1)^n*Cos[n*Pi/3])/36, {n, 7, 60}]] (* G. C. Greubel, Aug 04 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^12)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 04 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^12)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 04 2019
(Sage) ((1+x^12)/((1-x)*(1-x^2)*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
(GAP) a:=[8, 10, 12, 14, 16, 20];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4]-a[n-5]+a[n-6]; od; Concatenation([1, 1, 2, 3, 4, 5, 7], a); # G. C. Greubel, Aug 04 2019
CROSSREFS
Sequence in context: A370747 A008757 A008756 * A029006 A085756 A350896
KEYWORD
nonn
STATUS
approved