login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008757
Expansion of (1+x^14)/((1-x)*(1-x^2)*(1-x^3)).
1
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 25, 28, 32, 36, 41, 45, 51, 56, 62, 68, 75, 81, 89, 96, 104, 112, 121, 129, 139, 148, 158, 168, 179, 189, 201, 212, 224, 236, 249, 261, 275, 288, 302, 316
OFFSET
0,3
FORMULA
a(n) = (6*(n-4)^2 + 287 + 9*(-1)^n + 8*(-1)^n*cos((n-2)*Pi/3) + 8*cos(2*n*Pi/3))/36 for n >= 9. - G. C. Greubel, Aug 04 2019
MATHEMATICA
CoefficientList[Series[(1+x^14)/(1-x)/(1-x^2)/(1-x^3), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 25}, 60] (* Harvey P. Dale, Jul 27 2017 *)
Join[{1, 1, 2, 3, 4, 5, 7, 8, 10}, Table[(6*(n-4)^2 +287 +9*(-1)^n +8*(-1)^n*Cos[(n-2)*Pi/3] +8*Cos[2*n*Pi/3])/36, {n, 9, 60}]] (* G. C. Greubel, Aug 04 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^14)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 04 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^14)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 04 2019
(Sage) ((1+x^14)/((1-x)*(1-x^2)*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
(GAP) a:=[12, 14, 16, 19, 21, 25];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4] -a[n-5]+a[n-6]; od; Concatenation([1, 1, 2, 3, 4, 5, 7, 8, 10], a); # G. C. Greubel, Aug 04 2019
CROSSREFS
Sequence in context: A008759 A008758 A370747 * A008756 A008755 A029006
KEYWORD
nonn
STATUS
approved