login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008758
Expansion of (1+x^15)/((1-x)*(1-x^2)*(1-x^3)).
1
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 28, 31, 35, 40, 44, 49, 55, 60, 66, 73, 79, 86, 94, 101, 109, 118, 126, 135, 145, 154, 164, 175, 185, 196, 208, 219, 231, 244, 256, 269, 283, 296, 310
OFFSET
0,3
FORMULA
a(n) = (6*n^2 -54*n +452 + 8*(-1)^n*cos(n*Pi/3) + 8*cos(2*n*Pi/3))/36 for n>9. - G. C. Greubel, Aug 09 2019
MAPLE
seq(coeff(series((1+x^15)/((1-x)*(1-x^2)*(1-x^3)), x, n+1), x, n), n = 1 .. 60); # G. C. Greubel, Aug 09 2019
MATHEMATICA
CoefficientList[Series[(1+x^15)/(1-x)/(1-x^2)/(1-x^3), {x, 0, 60}], x] (* Harvey P. Dale, Dec 28 2013 *)
Join[{1, 1, 2, 3, 4, 5, 7, 8, 10, 12}, Table[(6*n^2 -54*n +452 + 8*(-1)^n*Cos[n*Pi/3] + 8*Cos[2*n*Pi/3])/36, {n, 10, 60}]] (* G. C. Greubel, Aug 09 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^15)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^15)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 09 2019
(Sage)
def A008758_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^15)/((1-x)*(1-x^2)*(1-x^3)) ).list()
A008758_list(60) # G. C. Greubel, Aug 09 2019
(GAP) a:=[14, 16, 19, 21, 24];; for n in [6..30] do a[n]:=2*a[n-1]-a[n-2] +a[n-3]-2*a[n-4]+a[n-5]; od; Concatenation([1, 1, 2, 3, 4, 5, 7, 8, 10, 12], a); # G. C. Greubel, Aug 09 2019
CROSSREFS
Sequence in context: A008761 A008760 A008759 * A370747 A008757 A008756
KEYWORD
nonn
STATUS
approved