login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008760
Expansion of (1+x^17)/((1-x)*(1-x^2)*(1-x^3)).
1
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 34, 38, 42, 47, 52, 57, 63, 69, 75, 82, 89, 96, 104, 112, 120, 129, 138, 147, 157, 167, 177, 188, 199, 210, 222, 234, 246, 259, 272, 285, 299, 313
OFFSET
0,3
FORMULA
G.f.: (1+x^17)/((1-x)*(1-x^2)*(1-x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5). - Wesley Ivan Hurt, May 25 2024
MAPLE
seq(coeff(series((1+x^17)/((1-x)*(1-x^2)*(1-x^3)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Aug 09 2019
MATHEMATICA
CoefficientList[Series[(1+x^17)/(1-x)/(1-x^2)/(1-x^3), {x, 0, 50}], x] (* Harvey P. Dale, Nov 30 2011 *)
Join[{1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16}, LinearRecurrence[{2, -1, 1, -2, 1}, {19, 21, 24, 27, 30}, 48]] (* G. C. Greubel, Aug 09 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^17)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^17)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 09 2019
(Sage)
def A008760_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^17)/((1-x)*(1-x^2)*(1-x^3)) ).list()
A008760_list(60) # G. C. Greubel, Aug 09 2019
(GAP) a:=[19, 21, 24, 27, 30];; for n in [6..48] do a[n]:=2*a[n-1]-a[n-2] +a[n-3]-2*a[n-4]+a[n-5]; od; Concatenation([1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16], a); # G. C. Greubel, Aug 09 2019
CROSSREFS
Sequence in context: A001399 A069905 A008761 * A008759 A008758 A370747
KEYWORD
nonn
STATUS
approved