login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029006
Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^12)).
0
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 20, 22, 26, 30, 34, 38, 44, 48, 54, 60, 66, 72, 81, 87, 96, 105, 114, 123, 135, 144, 156, 168, 180, 192, 208, 220, 236, 252, 268, 284, 304, 320, 340, 360, 380, 400, 425, 445
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 3 and 12. - Ilya Gutkovskiy, May 13 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, -1, -1, 1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 1, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=5, a(6)=7, a(7)=8, a(8)=10, a(9)=12, a(10)=14, a(11)=16, a(12)=20, a(13)=22, a(14)=26, a(15)=30, a(16)=34, a(17)=38, a(n)=a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6)+ a(n-12)- a(n-13)- a(n-14)+a(n-16)+a(n-17)-a(n-18). - Harvey P. Dale, Nov 01 2015
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3)(1-x^12)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 1, 0, -1, -1, 1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 1, 1, -1}, {1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 20, 22, 26, 30, 34, 38}, 50] (* Harvey P. Dale, Nov 01 2015 *)
CROSSREFS
Sequence in context: A008757 A008756 A008755 * A085756 A350896 A008754
KEYWORD
nonn
AUTHOR
STATUS
approved