login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029004
Expansion of 1/((1-x)(1-x^2)(1-x^3)(1-x^10)).
0
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 15, 17, 21, 24, 28, 32, 37, 41, 47, 52, 59, 65, 73, 80, 89, 97, 107, 116, 127, 137, 150, 161, 175, 188, 203, 217, 234, 249, 267, 284, 304, 322, 344, 364, 387, 409, 434, 457, 484, 509
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 3, and 10. [Joerg Arndt, Jul 07 2013]
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, -1, -1, 1, 0, 0, 0, 1, -1, -1, 0, 1, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=5, a(6)=7, a(7)=8, a(8)=10, a(9)=12, a(10)=15, a(11)=17, a(12)=21, a(13)=24, a(14)=28, a(15)=32, a(n)=a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6)+a(n-10)-a(n-11)- a(n-12)+ a(n-14)+a(n-15)-a(n-16). - Harvey P. Dale, Jun 01 2013
a(n) = floor((2*n^3+48*n^2+327*n+927+9*(n+1)*(-1)^n)/720). - Tani Akinari, Jul 07 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3)(1-x^10)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 1, 0, -1, -1, 1, 0, 0, 0, 1, -1, -1, 0, 1, 1, -1}, {1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 15, 17, 21, 24, 28, 32}, 60] (* Harvey P. Dale, Jun 01 2013 *)
CROSSREFS
Sequence in context: A132154 A049807 A008753 * A332728 A008752 A029003
KEYWORD
nonn
AUTHOR
STATUS
approved