Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:44:36
%S 1,1,2,3,5,6,9,11,15,18,23,27,35,40,49,57,69,78,93,105,123,138,159,
%T 177,203,224,253,279,313,342,381,415,459,498,547,591,647,696,757,813,
%U 881,942,1017,1085,1167,1242,1331,1413,1511,1600,1705,1803,1917,2022,2145
%N Expansion of (1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
%H G. C. Greubel, <a href="/A008773/b008773.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-2,0,0,1,1,-1).
%p seq(coeff(series((1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # _G. C. Greubel_, Sep 10 2019
%t CoefficientList[Series[(1+x^12)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x,0,60}], x] (* _Stefan Steinerberger_, Apr 08 2006 *)
%t Join[{1,1,2}, LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1}, {3,5,6,9,11,15, 18,23,27,35}, 60]] (* _G. C. Greubel_, Sep 10 2019 *)
%o (PARI) my(x='x+O('x^60)); Vec((1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ _G. C. Greubel_, Sep 10 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // _G. C. Greubel_, Sep 10 2019
%o (Sage)
%o def A008773_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P((1+x^12)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
%o A008773_list(60) # _G. C. Greubel_, Sep 10 2019
%o (GAP) a:=[3,5,6,9,11,15,18,23,27,35];; for n in [11..60] do a[n]:=a[n-1] +a[n-2]-2*a[n-5]+a[n-8]+a[n-9]-a[n-10]; od; Concatenation([1,1,2], a); # _G. C. Greubel_, Sep 10 2019
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Stefan Steinerberger_, Apr 08 2006