login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309830
Sum of the odd parts appearing among the smallest parts of the partitions of n into 5 parts.
2
0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 26, 30, 40, 48, 62, 72, 91, 105, 129, 148, 182, 206, 248, 282, 335, 377, 443, 496, 576, 642, 743, 823, 943, 1044, 1188, 1308, 1479, 1623, 1823, 1994, 2233, 2433, 2709, 2948, 3268, 3544, 3913, 4233, 4654, 5023
OFFSET
0,8
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} l * (l mod 2).
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) + 2*a(n-10) - 2*a(n-11) - 4*a(n-12) + 2*a(n-13) + 4*a(n-14) + 2*a(n-15) - 4*a(n-16) - 2*a(n-17) + 2*a(n-18) - a(n-20) + a(n-21) + 2*a(n-22) - a(n-23) - 2*a(n-24) - a(n-25) + 2*a(n-26) + a(n-27) - a(n-28) for n > 27.
EXAMPLE
Figure 1: The partitions of n into 5 parts for n = 5, 6, ...
1+1+1+1+5
1+1+1+2+4
1+1+1+1+4 1+1+1+3+3
1+1+1+1+3 1+1+1+2+3 1+1+2+2+3
1+1+1+1+1 1+1+1+1+2 1+1+1+2+2 1+1+2+2+2 1+2+2+2+2
-----------------------------------------------------------------------
n | 5 6 7 8 9 ...
-----------------------------------------------------------------------
a(n) | 1 1 2 3 5 ...
-----------------------------------------------------------------------
MATHEMATICA
LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1, 0, 2, -2, -4, 2, 4,
2, -4, -2, 2, 0, -1, 1, 2, -1, -2, -1, 2, 1, -1}, {0, 0, 0, 0, 0, 1,
1, 2, 3, 5, 6, 9, 11, 15, 18, 26, 30, 40, 48, 62, 72, 91, 105, 129,
148, 182, 206, 248}, 50]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 19 2019
STATUS
approved