login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309787
Palindromes whose product of digits are palindromes with at least two digits.
4
676, 777, 16761, 17771, 23732, 32723, 61716, 71717, 1167611, 1177711, 1237321, 1327231, 1617161, 1717171, 2137312, 2317132, 3127213, 3217123, 6117116, 7117117, 111676111, 111777111, 112373211, 113272311, 116171611, 117171711, 121373121, 123171321
OFFSET
1,1
COMMENTS
For n < 40 every term relates to 676 or 777.
EXAMPLE
For 676: 6*7*6 = 252.
For 1717171: 1*7*1*7*1*7*1 = 343.
MAPLE
ispali:= proc(n) option remember; local L, i;
L:= convert(n, base, 10);
andmap(i -> L[i]=L[-i], [$1..floor(nops(L)/2)])
end proc:
P[1]:= [$1..9]:
P[2]:= [seq(11*i, i=1..9)]:
for d from 3 to 13 do
P[d]:= [seq(seq((10^(d-1)+1)*i+10*x, x=P[d-2]), i=1..9)]
od:
filter:= proc(n) local p; p:= convert(convert(n, base, 10), `*`);
p >= 11 and ispali(p)
end proc:
map(op, [seq(select(filter, P[d]), d=1..13)]); # Robert Israel, Nov 14 2019
MATHEMATICA
pd[n_] := Times @@ IntegerDigits[n]; aQ[n_] := PalindromeQ[n] && (p = pd[n]) > 9 && PalindromeQ[p]; Select[Range[10^7], aQ] (* Amiram Eldar, Nov 12 2019 *)
PROG
(Magma) f:=func<n|Intseq(n) eq Reverse(Intseq(n))>; g:=func<m| #Intseq(&*Intseq(m)) ge 2>; [k:k in [1..10000000]| f(k) and f(&*Intseq(k)) and g(k)]; // Marius A. Burtea, Nov 12 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Maxim Veselov, Nov 11 2019
EXTENSIONS
Corrected by Robert Israel, Nov 14 2019
STATUS
approved