login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309790
G.f. A(x) satisfies: A(x) = 2*x*(1 - x)*A(x^2) + x/(1 - x).
1
0, 1, 1, 3, -1, 3, -1, 7, -5, -1, 3, 7, -5, -1, 3, 15, -13, -9, 11, -1, 3, 7, -5, 15, -13, -9, 11, -1, 3, 7, -5, 31, -29, -25, 27, -17, 19, 23, -21, -1, 3, 7, -5, 15, -13, -9, 11, 31, -29, -25, 27, -17, 19, 23, -21, -1, 3, 7, -5, 15, -13, -9, 11, 63, -61, -57, 59
OFFSET
0,4
FORMULA
a(0) = 0; a(2*n+2) = -2*a(n) + 1, a(2*n+1) = 2*a(n) + 1.
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, 2*
`if`(irem(n, 2, 'r')=0, -a(r-1), a(r))+1)
end:
seq(a(n), n=0..2^7-2); # Alois P. Heinz, Aug 29 2019
MATHEMATICA
nmax = 66; A[_] = 0; Do[A[x_] = 2 x (1 - x) A[x^2] + x/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 0; a[n_] := If[EvenQ[n], -2 a[(n - 2)/2] + 1, 2 a[(n - 1)/2] + 1]; Table[a[n], {n, 0, 66}]
CROSSREFS
Cf. A000225 (fixed points), A006257.
Compare also to the scatter plots of A117966, A317825.
Sequence in context: A318506 A322382 A122410 * A349619 A082495 A329385
KEYWORD
sign,look,hear
AUTHOR
Ilya Gutkovskiy, Aug 28 2019
STATUS
approved