OFFSET
0,2
COMMENTS
This sequence and its companion A309792 describe the additive constants which occur in an infinite series of maps from the row indices in the table defined by A307048 to the arithmetic progression contained in a specific column of that table. Only rows with indices of the form 6*j - 2 are concerned, and j is mapped to the unique term in that row (cf. example).
Conjecture: Any finite subset of these maps can build chains of finite length only.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,9,-9).
FORMULA
a(n) = (1/48)*(-32+2^(n/2)*(42*(1+(-1)^n)-2*(-i)^n+105*sqrt(2)*(1-(-1)^n)+11*i*(-i)^n*sqrt(2)-i^(n+1)*(-2*i+11*sqrt(2)))), where i=sqrt(-1). - Stefano Spezia, Aug 19 2019
EXAMPLE
The maps for k >= 0 start with:
3*k + 1 -> 8*k + 2 ( 4->10, 7->18, 10->26, ...)
9*k + 9 -> 8*k + 8 ( 9-> 8, 18->16, 27->24, ...)
9*k + 3 -> 16*k + 5 ( 3-> 5, 12->21, 21->37, ...)
27*k + 15 -> 16*k + 9 (15-> 9, 42->25, 69->41, ...)
27*k + 6 -> 32*k + 7 ( 6-> 7, 33->39, 60->71, ...)
81*k + 78 -> 32*k + 31 (78->31, 159->63, 240->95, ...)
^ ^
| |
Chains:
33 -> 39 -> 69 -> 41
114 -> 135 -> 120 -> 213 -> 75 -> 133
MATHEMATICA
LinearRecurrence[{1, 0, 0, 9, -9}, {1, 9, 3, 15, 6}, 32] (* or *) CoefficientList[Series[(1 + 8*x - 6*x^2 + 12*x^3 - 18*x^4)/(1 - x - 9*x^4 + 9*x^5), {x, 0, 40}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Georg Fischer, Aug 17 2019
STATUS
approved