login
A309791
Expansion of (1 + 8*x - 6*x^2 + 12*x^3 - 18*x^4)/(1 - x - 9*x^4 + 9*x^5).
2
1, 9, 3, 15, 6, 78, 24, 132, 51, 699, 213, 1185, 456, 6288, 1914, 10662, 4101, 56589, 17223, 95955, 36906, 509298, 155004, 863592, 332151, 4583679, 1395033, 7772325, 2989356, 41253108, 12555294, 69950922, 26904201, 371277969, 112997643, 629558295, 242137806, 3341501718, 1016978784, 5666024652
OFFSET
0,2
COMMENTS
This sequence and its companion A309792 describe the additive constants which occur in an infinite series of maps from the row indices in the table defined by A307048 to the arithmetic progression contained in a specific column of that table. Only rows with indices of the form 6*j - 2 are concerned, and j is mapped to the unique term in that row (cf. example).
Conjecture: Any finite subset of these maps can build chains of finite length only.
FORMULA
a(n) = (1/48)*(-32+2^(n/2)*(42*(1+(-1)^n)-2*(-i)^n+105*sqrt(2)*(1-(-1)^n)+11*i*(-i)^n*sqrt(2)-i^(n+1)*(-2*i+11*sqrt(2)))), where i=sqrt(-1). - Stefano Spezia, Aug 19 2019
EXAMPLE
The maps for k >= 0 start with:
3*k + 1 -> 8*k + 2 ( 4->10, 7->18, 10->26, ...)
9*k + 9 -> 8*k + 8 ( 9-> 8, 18->16, 27->24, ...)
9*k + 3 -> 16*k + 5 ( 3-> 5, 12->21, 21->37, ...)
27*k + 15 -> 16*k + 9 (15-> 9, 42->25, 69->41, ...)
27*k + 6 -> 32*k + 7 ( 6-> 7, 33->39, 60->71, ...)
81*k + 78 -> 32*k + 31 (78->31, 159->63, 240->95, ...)
^ ^
| |
Chains:
33 -> 39 -> 69 -> 41
114 -> 135 -> 120 -> 213 -> 75 -> 133
MATHEMATICA
LinearRecurrence[{1, 0, 0, 9, -9}, {1, 9, 3, 15, 6}, 32] (* or *) CoefficientList[Series[(1 + 8*x - 6*x^2 + 12*x^3 - 18*x^4)/(1 - x - 9*x^4 + 9*x^5), {x, 0, 40}], x]
CROSSREFS
Sequence in context: A248312 A329653 A170874 * A103935 A040077 A195312
KEYWORD
nonn,easy
AUTHOR
Georg Fischer, Aug 17 2019
STATUS
approved