login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Palindromes whose product of digits are palindromes with at least two digits.
4

%I #63 Sep 08 2022 08:46:22

%S 676,777,16761,17771,23732,32723,61716,71717,1167611,1177711,1237321,

%T 1327231,1617161,1717171,2137312,2317132,3127213,3217123,6117116,

%U 7117117,111676111,111777111,112373211,113272311,116171611,117171711,121373121,123171321

%N Palindromes whose product of digits are palindromes with at least two digits.

%C For n < 40 every term relates to 676 or 777.

%H Chai Wah Wu, <a href="/A309787/b309787.txt">Table of n, a(n) for n = 1..10912</a>

%e For 676: 6*7*6 = 252.

%e For 1717171: 1*7*1*7*1*7*1 = 343.

%p ispali:= proc(n) option remember; local L,i;

%p L:= convert(n,base,10);

%p andmap(i -> L[i]=L[-i], [$1..floor(nops(L)/2)])

%p end proc:

%p P[1]:= [$1..9]:

%p P[2]:= [seq(11*i,i=1..9)]:

%p for d from 3 to 13 do

%p P[d]:= [seq(seq((10^(d-1)+1)*i+10*x, x=P[d-2]),i=1..9)]

%p od:

%p filter:= proc(n) local p; p:= convert(convert(n,base,10),`*`);

%p p >= 11 and ispali(p)

%p end proc:

%p map(op,[seq(select(filter, P[d]),d=1..13)]); # _Robert Israel_, Nov 14 2019

%t pd[n_] := Times @@ IntegerDigits[n]; aQ[n_] := PalindromeQ[n] && (p = pd[n]) > 9 && PalindromeQ[p]; Select[Range[10^7], aQ] (* _Amiram Eldar_, Nov 12 2019 *)

%o (Magma) f:=func<n|Intseq(n) eq Reverse(Intseq(n))>; g:=func<m| #Intseq(&*Intseq(m)) ge 2>; [k:k in [1..10000000]| f(k) and f(&*Intseq(k)) and g(k)]; // _Marius A. Burtea_, Nov 12 2019

%Y Cf. A002113, A117055

%K nonn,base

%O 1,1

%A _Maxim Veselov_, Nov 11 2019

%E Corrected by _Robert Israel_, Nov 14 2019